Initial Analysis of Multiple Retinal Diseases Classification with Fuzzy Medical Image Retrieval
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254717" target="_blank" >RIV/61989100:27240/23:10254717 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10394609" target="_blank" >https://ieeexplore.ieee.org/document/10394609</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SMC53992.2023.10394609" target="_blank" >10.1109/SMC53992.2023.10394609</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Initial Analysis of Multiple Retinal Diseases Classification with Fuzzy Medical Image Retrieval
Popis výsledku v původním jazyce
Medical image retrieval is a highly discussed topic, and it includes an efficient classification of diagnoses based on the similarity search in large databases of medical images. It is very important for early and correct diagnosis and treatment. In this paper, we focus on detecting four diagnoses of treatable retinal diseases in optical coherence tomography (OCT) images. The fuzzy medical image retrieval model (FMIR) is applied to transfer images to fuzzy signatures organized in Fuzzy S-tree, as it was previously successfully used for breast cancer detection and COVID-19 chest X-ray detection. The paper examines and compares the performance of the FMIR method on 4-class and binary classification models built on an OCT dataset and compares the impact of two metrics, Euclidean and Hamming fuzzy distances. The experiments show a clear dominance of Hamming fuzzy distance. The best accuracy is achieved for binary classification (61.16 - 93.8%), while the performance of the 4-class model is worse (51.7%). The distribution of signature space and classification performance are analyzed in detail.
Název v anglickém jazyce
Initial Analysis of Multiple Retinal Diseases Classification with Fuzzy Medical Image Retrieval
Popis výsledku anglicky
Medical image retrieval is a highly discussed topic, and it includes an efficient classification of diagnoses based on the similarity search in large databases of medical images. It is very important for early and correct diagnosis and treatment. In this paper, we focus on detecting four diagnoses of treatable retinal diseases in optical coherence tomography (OCT) images. The fuzzy medical image retrieval model (FMIR) is applied to transfer images to fuzzy signatures organized in Fuzzy S-tree, as it was previously successfully used for breast cancer detection and COVID-19 chest X-ray detection. The paper examines and compares the performance of the FMIR method on 4-class and binary classification models built on an OCT dataset and compares the impact of two metrics, Euclidean and Hamming fuzzy distances. The experiments show a clear dominance of Hamming fuzzy distance. The best accuracy is achieved for binary classification (61.16 - 93.8%), while the performance of the 4-class model is worse (51.7%). The distribution of signature space and classification performance are analyzed in detail.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics 2023
ISBN
979-8-3503-3703-7
ISSN
1062-922X
e-ISSN
2577-1655
Počet stran výsledku
6
Strana od-do
4926-4931
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Honolulu
Datum konání akce
1. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—