Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Research on Home Energy Consumption Optimization Based on User Habit Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10256943" target="_blank" >RIV/61989100:27240/23:10256943 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://bit.nkust.edu.tw/~jni/2023/vol8/s3/13.JNI-0727.pdf" target="_blank" >http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://bit.nkust.edu.tw/~jni/2023/vol8/s3/13.JNI-0727.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Research on Home Energy Consumption Optimization Based on User Habit Analysis

  • Popis výsledku v původním jazyce

    With the development of smart electricity technology and demand response, optimization of household electricity consumption behavior has become an important research element for energy saving in residential buildings. In the study of smart electricity consumption in households, the differences in users’ lifestyles and their preferences for the use of various appliances can have a great impact on the results. And many existing methods need to rely on users’ awareness, which does not meet the popular demand. In this paper, we propose a new method for residential load scheduling that takes into account the load characteristics of appliances and electricity consumption habits. By analyzing the household electricity consumption data set and mining the personalized needs and us-age preferences of this user for various appliances, we establish an optimization model for electricity consumption behavior that combines the minimization of electricity expenses and user comfort. Finally, an improved artificial bee colony algorithm is proposed for solving the optimization model and generating a personalized dispatching strategy combined with real-time electricity pricing (RTEP) tariff. The proposed improved artificial swarm algorithm is compared with other classical algorithms, including GA, PSO, ABC, and QABC, and the analysis of cases shows that the model can effectively reduce the electricity consumption cost and ensure the customer satisfaction, and the proposed improved ABC-based algorithm outperforms other algorithms in terms of cost and user comfort. © 2023, Journal of Network Intelligence.

  • Název v anglickém jazyce

    Research on Home Energy Consumption Optimization Based on User Habit Analysis

  • Popis výsledku anglicky

    With the development of smart electricity technology and demand response, optimization of household electricity consumption behavior has become an important research element for energy saving in residential buildings. In the study of smart electricity consumption in households, the differences in users’ lifestyles and their preferences for the use of various appliances can have a great impact on the results. And many existing methods need to rely on users’ awareness, which does not meet the popular demand. In this paper, we propose a new method for residential load scheduling that takes into account the load characteristics of appliances and electricity consumption habits. By analyzing the household electricity consumption data set and mining the personalized needs and us-age preferences of this user for various appliances, we establish an optimization model for electricity consumption behavior that combines the minimization of electricity expenses and user comfort. Finally, an improved artificial bee colony algorithm is proposed for solving the optimization model and generating a personalized dispatching strategy combined with real-time electricity pricing (RTEP) tariff. The proposed improved artificial swarm algorithm is compared with other classical algorithms, including GA, PSO, ABC, and QABC, and the analysis of cases shows that the model can effectively reduce the electricity consumption cost and ensure the customer satisfaction, and the proposed improved ABC-based algorithm outperforms other algorithms in terms of cost and user comfort. © 2023, Journal of Network Intelligence.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Network Intelligence

  • ISSN

    2414-8105

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    TW - Čínská republika (Tchaj-wan)

  • Počet stran výsledku

    17

  • Strana od-do

    839-855

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85166738897