Research on Home Energy Consumption Optimization Based on User Habit Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10256943" target="_blank" >RIV/61989100:27240/23:10256943 - isvavai.cz</a>
Výsledek na webu
<a href="http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://bit.nkust.edu.tw/~jni/2023/vol8/s3/13.JNI-0727.pdf" target="_blank" >http://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://bit.nkust.edu.tw/~jni/2023/vol8/s3/13.JNI-0727.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Research on Home Energy Consumption Optimization Based on User Habit Analysis
Popis výsledku v původním jazyce
With the development of smart electricity technology and demand response, optimization of household electricity consumption behavior has become an important research element for energy saving in residential buildings. In the study of smart electricity consumption in households, the differences in users’ lifestyles and their preferences for the use of various appliances can have a great impact on the results. And many existing methods need to rely on users’ awareness, which does not meet the popular demand. In this paper, we propose a new method for residential load scheduling that takes into account the load characteristics of appliances and electricity consumption habits. By analyzing the household electricity consumption data set and mining the personalized needs and us-age preferences of this user for various appliances, we establish an optimization model for electricity consumption behavior that combines the minimization of electricity expenses and user comfort. Finally, an improved artificial bee colony algorithm is proposed for solving the optimization model and generating a personalized dispatching strategy combined with real-time electricity pricing (RTEP) tariff. The proposed improved artificial swarm algorithm is compared with other classical algorithms, including GA, PSO, ABC, and QABC, and the analysis of cases shows that the model can effectively reduce the electricity consumption cost and ensure the customer satisfaction, and the proposed improved ABC-based algorithm outperforms other algorithms in terms of cost and user comfort. © 2023, Journal of Network Intelligence.
Název v anglickém jazyce
Research on Home Energy Consumption Optimization Based on User Habit Analysis
Popis výsledku anglicky
With the development of smart electricity technology and demand response, optimization of household electricity consumption behavior has become an important research element for energy saving in residential buildings. In the study of smart electricity consumption in households, the differences in users’ lifestyles and their preferences for the use of various appliances can have a great impact on the results. And many existing methods need to rely on users’ awareness, which does not meet the popular demand. In this paper, we propose a new method for residential load scheduling that takes into account the load characteristics of appliances and electricity consumption habits. By analyzing the household electricity consumption data set and mining the personalized needs and us-age preferences of this user for various appliances, we establish an optimization model for electricity consumption behavior that combines the minimization of electricity expenses and user comfort. Finally, an improved artificial bee colony algorithm is proposed for solving the optimization model and generating a personalized dispatching strategy combined with real-time electricity pricing (RTEP) tariff. The proposed improved artificial swarm algorithm is compared with other classical algorithms, including GA, PSO, ABC, and QABC, and the analysis of cases shows that the model can effectively reduce the electricity consumption cost and ensure the customer satisfaction, and the proposed improved ABC-based algorithm outperforms other algorithms in terms of cost and user comfort. © 2023, Journal of Network Intelligence.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Network Intelligence
ISSN
2414-8105
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
TW - Čínská republika (Tchaj-wan)
Počet stran výsledku
17
Strana od-do
839-855
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85166738897