A Multi-Objective Improved Cockroach Swarm Algorithm Approach for Apartment Energy Management Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F23%3A50020816" target="_blank" >RIV/62690094:18450/23:50020816 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2078-2489/14/10/521" target="_blank" >https://www.mdpi.com/2078-2489/14/10/521</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/info14100521" target="_blank" >10.3390/info14100521</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Multi-Objective Improved Cockroach Swarm Algorithm Approach for Apartment Energy Management Systems
Popis výsledku v původním jazyce
The electrical demand and generation in power systems is currently the biggest source of uncertainty for an electricity provider. For a dependable and financially advantageous electricity system, demand response (DR) success as a result of household appliance energy management has attracted significant attention. Due to fluctuating electricity rates and usage trends, determining the best schedule for apartment appliances can be difficult. As a result of this context, the Improved Cockroach Swarm Optimization Algorithm (ICSOA) is combined with the Innovative Apartments Appliance Scheduling (IAAS) framework. Using the proposed technique, the cost of electricity reduction, user comfort maximization, and peak-to-average ratio reduction are analyzed for apartment appliances. The proposed framework is evaluated by comparing it with BFOA and W/O scheduling cases. In comparison to the W/O scheduling case, the BFOA method lowered energy costs by 17.75%, but the ICSA approach reduced energy cost by 46.085%. According to the results, the created ICSA algorithm performed better than the BFOA and W/O scheduling situations in terms of the stated objectives and was advantageous to both utilities and consumers.
Název v anglickém jazyce
A Multi-Objective Improved Cockroach Swarm Algorithm Approach for Apartment Energy Management Systems
Popis výsledku anglicky
The electrical demand and generation in power systems is currently the biggest source of uncertainty for an electricity provider. For a dependable and financially advantageous electricity system, demand response (DR) success as a result of household appliance energy management has attracted significant attention. Due to fluctuating electricity rates and usage trends, determining the best schedule for apartment appliances can be difficult. As a result of this context, the Improved Cockroach Swarm Optimization Algorithm (ICSOA) is combined with the Innovative Apartments Appliance Scheduling (IAAS) framework. Using the proposed technique, the cost of electricity reduction, user comfort maximization, and peak-to-average ratio reduction are analyzed for apartment appliances. The proposed framework is evaluated by comparing it with BFOA and W/O scheduling cases. In comparison to the W/O scheduling case, the BFOA method lowered energy costs by 17.75%, but the ICSA approach reduced energy cost by 46.085%. According to the results, the created ICSA algorithm performed better than the BFOA and W/O scheduling situations in terms of the stated objectives and was advantageous to both utilities and consumers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION
ISSN
2078-2489
e-ISSN
2078-2489
Svazek periodika
14
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
"Article Number: 521"
Kód UT WoS článku
001089533900001
EID výsledku v databázi Scopus
2-s2.0-85175079980