Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fundus-DeepNet: Multi-label deep learning classification system for enhanced detection of multiple ocular diseases through data fusion of fundus images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10253319" target="_blank" >RIV/61989100:27240/24:10253319 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1566253523003755" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1566253523003755</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.inffus.2023.102059" target="_blank" >10.1016/j.inffus.2023.102059</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fundus-DeepNet: Multi-label deep learning classification system for enhanced detection of multiple ocular diseases through data fusion of fundus images

  • Popis výsledku v původním jazyce

    Detecting multiple ocular diseases in fundus images is crucial in ophthalmic diagnosis. This study introduces the Fundus-DeepNet system, an automated multi-label deep learning classification system designed to identify multiple ocular diseases by integrating feature representations from pairs of fundus images (e.g., left and right eyes). The study initiates with a comprehensive image pre-processing procedure, including circular border cropping, image resizing, contrast enhancement, noise removal, and data augmentation. Subsequently, discriminative deep feature representations are extracted using multiple deep learning blocks, namely the HighResolution Network (HRNet) and Attention Block, which serve as feature descriptors. The SENet Block is then applied to further enhance the quality and robustness of feature representations from a pair of fundus images, ultimately consolidating them into a single feature representation. Finally, a sophisticated classification model, known as a Discriminative Restricted Boltzmann Machine (DRBM), is employed. By incorporating a Softmax layer, this DRBM is adept at generating a probability distribution that specifically identifies eight different ocular diseases. Extensive experiments were conducted on the challenging Ophthalmic Image Analysis-Ocular Disease Intelligent Recognition (OIA-ODIR) dataset, comprising diverse fundus images depicting eight different ocular diseases. The Fundus-DeepNet system demonstrated F1-scores, Kappa scores, AUC, and final scores of 88.56 %, 88.92 %, 99.76 %, and 92.41 % in the off-site test set, and 89.13 %, 88.98 %, 99.86 %, and 92.66 % in the on-site test set.In summary, the Fundus-DeepNet system exhibits outstanding proficiency in accurately detecting multiple ocular diseases, offering a promising solution for early diagnosis and treatment in ophthalmology.

  • Název v anglickém jazyce

    Fundus-DeepNet: Multi-label deep learning classification system for enhanced detection of multiple ocular diseases through data fusion of fundus images

  • Popis výsledku anglicky

    Detecting multiple ocular diseases in fundus images is crucial in ophthalmic diagnosis. This study introduces the Fundus-DeepNet system, an automated multi-label deep learning classification system designed to identify multiple ocular diseases by integrating feature representations from pairs of fundus images (e.g., left and right eyes). The study initiates with a comprehensive image pre-processing procedure, including circular border cropping, image resizing, contrast enhancement, noise removal, and data augmentation. Subsequently, discriminative deep feature representations are extracted using multiple deep learning blocks, namely the HighResolution Network (HRNet) and Attention Block, which serve as feature descriptors. The SENet Block is then applied to further enhance the quality and robustness of feature representations from a pair of fundus images, ultimately consolidating them into a single feature representation. Finally, a sophisticated classification model, known as a Discriminative Restricted Boltzmann Machine (DRBM), is employed. By incorporating a Softmax layer, this DRBM is adept at generating a probability distribution that specifically identifies eight different ocular diseases. Extensive experiments were conducted on the challenging Ophthalmic Image Analysis-Ocular Disease Intelligent Recognition (OIA-ODIR) dataset, comprising diverse fundus images depicting eight different ocular diseases. The Fundus-DeepNet system demonstrated F1-scores, Kappa scores, AUC, and final scores of 88.56 %, 88.92 %, 99.76 %, and 92.41 % in the off-site test set, and 89.13 %, 88.98 %, 99.86 %, and 92.66 % in the on-site test set.In summary, the Fundus-DeepNet system exhibits outstanding proficiency in accurately detecting multiple ocular diseases, offering a promising solution for early diagnosis and treatment in ophthalmology.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Fusion

  • ISSN

    1566-2535

  • e-ISSN

    1872-6305

  • Svazek periodika

    102

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001098973700001

  • EID výsledku v databázi Scopus