Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A robust framework for the selection of optimal COVID-19 mask based on aggregations of interval-valued multi-fuzzy hypersoft sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10253320" target="_blank" >RIV/61989100:27240/24:10253320 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0957417423024466" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417423024466</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2023.121944" target="_blank" >10.1016/j.eswa.2023.121944</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A robust framework for the selection of optimal COVID-19 mask based on aggregations of interval-valued multi-fuzzy hypersoft sets

  • Popis výsledku v původním jazyce

    The selection of antivirus masks is an important problem in the context of the ongoing COVID-19 pandemic. Multiple attribute decision-making (MADM) algorithmic approaches can be used to evaluate and compare different masks based on multiple criteria, such as effectiveness, comfort, and cost. An aggregation of interval valued multi-fuzzy hypersoft sets provides a flexible framework for handling uncertainty and imprecision in the MADM process. This approach allows for the integration of multiple sources of information such as expert opinions and empirical data, and considers the different levels of uncertainty and ambiguity associated with each criterion. By using the matrix-manipulated aggregation of interval-valued multi-fuzzy hypersoft sets like the induced fuzzy matrix, -level matrix, threshold matrix, and mid-threshold matrix, an algorithm is proposed for the optimal selection of material for manufacturing antivirus masks. The robustness of the algorithm is maintained by following simple computation-based stages that enable a wide range of multidisciplinary readers to understand the idea vividly. By using this algorithm, it is possible to improve the accuracy and reliability of the decision-making process and to better balance the trade-offs between the different criteria, i.e., the computed results of the proposed algorithm and the structural aspects of the proposed approach are both compared with some relevant existing structures. Computation-based and structural comparisons are presented to assess the adaptability and reliability of the study. The first one is meant to check reliability, while the second is meant to check flexibility. In both cases, however, the presented approach yields the required standard. By comparing the prospective structure to the relevant developed model, the implications of the proposed framework are explored.

  • Název v anglickém jazyce

    A robust framework for the selection of optimal COVID-19 mask based on aggregations of interval-valued multi-fuzzy hypersoft sets

  • Popis výsledku anglicky

    The selection of antivirus masks is an important problem in the context of the ongoing COVID-19 pandemic. Multiple attribute decision-making (MADM) algorithmic approaches can be used to evaluate and compare different masks based on multiple criteria, such as effectiveness, comfort, and cost. An aggregation of interval valued multi-fuzzy hypersoft sets provides a flexible framework for handling uncertainty and imprecision in the MADM process. This approach allows for the integration of multiple sources of information such as expert opinions and empirical data, and considers the different levels of uncertainty and ambiguity associated with each criterion. By using the matrix-manipulated aggregation of interval-valued multi-fuzzy hypersoft sets like the induced fuzzy matrix, -level matrix, threshold matrix, and mid-threshold matrix, an algorithm is proposed for the optimal selection of material for manufacturing antivirus masks. The robustness of the algorithm is maintained by following simple computation-based stages that enable a wide range of multidisciplinary readers to understand the idea vividly. By using this algorithm, it is possible to improve the accuracy and reliability of the decision-making process and to better balance the trade-offs between the different criteria, i.e., the computed results of the proposed algorithm and the structural aspects of the proposed approach are both compared with some relevant existing structures. Computation-based and structural comparisons are presented to assess the adaptability and reliability of the study. The first one is meant to check reliability, while the second is meant to check flexibility. In both cases, however, the presented approach yields the required standard. By comparing the prospective structure to the relevant developed model, the implications of the proposed framework are explored.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Svazek periodika

    238

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    001098668200001

  • EID výsledku v databázi Scopus