Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A review of in-memory computing for machine learning: architectures, options

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10253776" target="_blank" >RIV/61989100:27240/24:10253776 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001127942300001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001127942300001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1108/IJWIS-08-2023-0131" target="_blank" >10.1108/IJWIS-08-2023-0131</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A review of in-memory computing for machine learning: architectures, options

  • Popis výsledku v původním jazyce

    Purpose: This paper aims to review in-memory computing (IMC) for machine learning (ML) applications from history, architectures and options aspects. In this review, the authors investigate different architectural aspects and collect and provide our comparative evaluations. Design/methodology/approach: Collecting over 40 IMC papers related to hardware design and optimization techniques of recent years, then classify them into three optimization option categories: optimization through graphic processing unit (GPU), optimization through reduced precision and optimization through hardware accelerator. Then, the authors brief those techniques in aspects such as what kind of data set it applied, how it is designed and what is the contribution of this design. Findings: ML algorithms are potent tools accommodated on IMC architecture. Although general-purpose hardware (central processing units and GPUs) can supply explicit solutions, their energy efficiencies have limitations because of their excessive flexibility support. On the other hand, hardware accelerators (field programmable gate arrays and application-specific integrated circuits) win on the energy efficiency aspect, but individual accelerator often adapts exclusively to ax single ML approach (family). From a long hardware evolution perspective, hardware/software collaboration heterogeneity design from hybrid platforms is an option for the researcher. Originality/value: IMC&apos;s optimization enables high-speed processing, increases performance and analyzes massive volumes of data in real-time. This work reviews IMC and its evolution. Then, the authors categorize three optimization paths for the IMC architecture to improve performance metrics. (C) 2023, Emerald Publishing Limited.

  • Název v anglickém jazyce

    A review of in-memory computing for machine learning: architectures, options

  • Popis výsledku anglicky

    Purpose: This paper aims to review in-memory computing (IMC) for machine learning (ML) applications from history, architectures and options aspects. In this review, the authors investigate different architectural aspects and collect and provide our comparative evaluations. Design/methodology/approach: Collecting over 40 IMC papers related to hardware design and optimization techniques of recent years, then classify them into three optimization option categories: optimization through graphic processing unit (GPU), optimization through reduced precision and optimization through hardware accelerator. Then, the authors brief those techniques in aspects such as what kind of data set it applied, how it is designed and what is the contribution of this design. Findings: ML algorithms are potent tools accommodated on IMC architecture. Although general-purpose hardware (central processing units and GPUs) can supply explicit solutions, their energy efficiencies have limitations because of their excessive flexibility support. On the other hand, hardware accelerators (field programmable gate arrays and application-specific integrated circuits) win on the energy efficiency aspect, but individual accelerator often adapts exclusively to ax single ML approach (family). From a long hardware evolution perspective, hardware/software collaboration heterogeneity design from hybrid platforms is an option for the researcher. Originality/value: IMC&apos;s optimization enables high-speed processing, increases performance and analyzes massive volumes of data in real-time. This work reviews IMC and its evolution. Then, the authors categorize three optimization paths for the IMC architecture to improve performance metrics. (C) 2023, Emerald Publishing Limited.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristický rámec pro vícecílové kombinatorické optimalizační problémy (META MO-COP)</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Web Information Systems

  • ISSN

    1744-0084

  • e-ISSN

    1744-0092

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    Prosinec 2023

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    24

  • Strana od-do

  • Kód UT WoS článku

    001127942300001

  • EID výsledku v databázi Scopus

    2-s2.0-85180242489