TFApprox: Towards a Fast Emulation of DNN Approximate Hardware Accelerators on GPU
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26230%2F20%3APU138605" target="_blank" >RIV/00216305:26230/20:PU138605 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.fit.vut.cz/research/publication/12072/" target="_blank" >https://www.fit.vut.cz/research/publication/12072/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/DATE48585.2020.9116299" target="_blank" >10.23919/DATE48585.2020.9116299</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TFApprox: Towards a Fast Emulation of DNN Approximate Hardware Accelerators on GPU
Popis výsledku v původním jazyce
Energy efficiency of hardware accelerators of deep neural networks (DNN) can be improved by introducing approximate arithmetic circuits. In order to quantify the error introduced by using these circuits and avoid the expensive hardware prototyping, a software emulator of the DNN accelerator is usually executed on CPU or GPU. However, this emulation is typically two or three orders of magnitude slower than a software DNN implementation running on CPU or GPU and operating with standard floating point arithmetic instructions and common DNN libraries. The reason is that there is no hardware support for approximate arithmetic operations on common CPUs and GPUs and these operations have to be expensively emulated. In order to address this issue, we propose an efficient emulation method for approximate circuits utilized in a given DNN accelerator which is emulated on GPU. All relevant approximate circuits are implemented as look-up tables and accessed through a texture memory mechanism of CUDA capable GPUs. We exploit the fact that the texture memory is optimized for irregular read-only access and in some GPU architectures is even implemented as a dedicated cache. This technique allowed us to reduce the inference time of the emulated DNN accelerator approximately 200 times with respect to an optimized CPU version on complex DNNs such as ResNet. The proposed approach extends the TensorFlow library and is available online at https://github.com/ehw-fit/tf-approximate.
Název v anglickém jazyce
TFApprox: Towards a Fast Emulation of DNN Approximate Hardware Accelerators on GPU
Popis výsledku anglicky
Energy efficiency of hardware accelerators of deep neural networks (DNN) can be improved by introducing approximate arithmetic circuits. In order to quantify the error introduced by using these circuits and avoid the expensive hardware prototyping, a software emulator of the DNN accelerator is usually executed on CPU or GPU. However, this emulation is typically two or three orders of magnitude slower than a software DNN implementation running on CPU or GPU and operating with standard floating point arithmetic instructions and common DNN libraries. The reason is that there is no hardware support for approximate arithmetic operations on common CPUs and GPUs and these operations have to be expensively emulated. In order to address this issue, we propose an efficient emulation method for approximate circuits utilized in a given DNN accelerator which is emulated on GPU. All relevant approximate circuits are implemented as look-up tables and accessed through a texture memory mechanism of CUDA capable GPUs. We exploit the fact that the texture memory is optimized for irregular read-only access and in some GPU architectures is even implemented as a dedicated cache. This technique allowed us to reduce the inference time of the emulated DNN accelerator approximately 200 times with respect to an optimized CPU version on complex DNNs such as ResNet. The proposed approach extends the TensorFlow library and is available online at https://github.com/ehw-fit/tf-approximate.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-10137S" target="_blank" >GA19-10137S: Navrhování a využívání knihoven aproximativních obvodů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)
ISBN
978-3-9819263-4-7
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
294-297
Název nakladatele
Institute of Electrical and Electronics Engineers
Místo vydání
Grenoble
Místo konání akce
Grenoble
Datum konání akce
9. 3. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000610549200053