Securing healthcare data in industrial cyber-physical systems using combining deep learning and blockchain technology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10253879" target="_blank" >RIV/61989100:27240/24:10253879 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0952197623017967" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197623017967</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2023.107612" target="_blank" >10.1016/j.engappai.2023.107612</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Securing healthcare data in industrial cyber-physical systems using combining deep learning and blockchain technology
Popis výsledku v původním jazyce
Industrial cyber-physical systems (ICPS) are emerging platforms for various industrial applications. For instance, remote healthcare monitoring, real-time healthcare data generation, and many other applications have been integrated into the ICPS platform. These healthcare applications encompass workflow tasks, such as processing within hospitals, laboratory tests, and insurance companies for patient payments, which necessitate a sequential flow. The external wireless, fog, and cloud services within ICPS face security issues that impact end-users' healthcare applications. Blockchain technology offers an optimal solution for ICPS-enabled applications. However, blockchain technology for the ICPS platform is still vulnerable to cyberattacks, while microservices are essential for executing applications. This paper introduces the novel "Pattern-Proof Malware Validation" (PoPMV) algorithm designed for blockchain in ICPS. It exploits a deep learning model (LSTM) with reinforcement learning techniques to receive feedback and rewards in real-time. The primary objective is to mitigate security vulnerabilities, enhance processing speed, identify both familiar and unfamiliar attacks, and optimize the functionality of ICPS. Simulations demonstrate the superiority of the proposed approach compared to current blockchain frameworks, showcasing dynamic allocation of microservices and improved security with comprehensive attack detection by 30%. (C) 2023 The Author(s)
Název v anglickém jazyce
Securing healthcare data in industrial cyber-physical systems using combining deep learning and blockchain technology
Popis výsledku anglicky
Industrial cyber-physical systems (ICPS) are emerging platforms for various industrial applications. For instance, remote healthcare monitoring, real-time healthcare data generation, and many other applications have been integrated into the ICPS platform. These healthcare applications encompass workflow tasks, such as processing within hospitals, laboratory tests, and insurance companies for patient payments, which necessitate a sequential flow. The external wireless, fog, and cloud services within ICPS face security issues that impact end-users' healthcare applications. Blockchain technology offers an optimal solution for ICPS-enabled applications. However, blockchain technology for the ICPS platform is still vulnerable to cyberattacks, while microservices are essential for executing applications. This paper introduces the novel "Pattern-Proof Malware Validation" (PoPMV) algorithm designed for blockchain in ICPS. It exploits a deep learning model (LSTM) with reinforcement learning techniques to receive feedback and rewards in real-time. The primary objective is to mitigate security vulnerabilities, enhance processing speed, identify both familiar and unfamiliar attacks, and optimize the functionality of ICPS. Simulations demonstrate the superiority of the proposed approach compared to current blockchain frameworks, showcasing dynamic allocation of microservices and improved security with comprehensive attack detection by 30%. (C) 2023 The Author(s)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Applications of Artificial Intelligence
ISSN
0952-1976
e-ISSN
—
Svazek periodika
129
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
"nestrankovano"
Kód UT WoS článku
001134750700001
EID výsledku v databázi Scopus
2-s2.0-85179001796