Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Securing healthcare data in industrial cyber-physical systems using combining deep learning and blockchain technology

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10253879" target="_blank" >RIV/61989100:27240/24:10253879 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0952197623017967" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197623017967</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engappai.2023.107612" target="_blank" >10.1016/j.engappai.2023.107612</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Securing healthcare data in industrial cyber-physical systems using combining deep learning and blockchain technology

  • Popis výsledku v původním jazyce

    Industrial cyber-physical systems (ICPS) are emerging platforms for various industrial applications. For instance, remote healthcare monitoring, real-time healthcare data generation, and many other applications have been integrated into the ICPS platform. These healthcare applications encompass workflow tasks, such as processing within hospitals, laboratory tests, and insurance companies for patient payments, which necessitate a sequential flow. The external wireless, fog, and cloud services within ICPS face security issues that impact end-users&apos; healthcare applications. Blockchain technology offers an optimal solution for ICPS-enabled applications. However, blockchain technology for the ICPS platform is still vulnerable to cyberattacks, while microservices are essential for executing applications. This paper introduces the novel &quot;Pattern-Proof Malware Validation&quot; (PoPMV) algorithm designed for blockchain in ICPS. It exploits a deep learning model (LSTM) with reinforcement learning techniques to receive feedback and rewards in real-time. The primary objective is to mitigate security vulnerabilities, enhance processing speed, identify both familiar and unfamiliar attacks, and optimize the functionality of ICPS. Simulations demonstrate the superiority of the proposed approach compared to current blockchain frameworks, showcasing dynamic allocation of microservices and improved security with comprehensive attack detection by 30%. (C) 2023 The Author(s)

  • Název v anglickém jazyce

    Securing healthcare data in industrial cyber-physical systems using combining deep learning and blockchain technology

  • Popis výsledku anglicky

    Industrial cyber-physical systems (ICPS) are emerging platforms for various industrial applications. For instance, remote healthcare monitoring, real-time healthcare data generation, and many other applications have been integrated into the ICPS platform. These healthcare applications encompass workflow tasks, such as processing within hospitals, laboratory tests, and insurance companies for patient payments, which necessitate a sequential flow. The external wireless, fog, and cloud services within ICPS face security issues that impact end-users&apos; healthcare applications. Blockchain technology offers an optimal solution for ICPS-enabled applications. However, blockchain technology for the ICPS platform is still vulnerable to cyberattacks, while microservices are essential for executing applications. This paper introduces the novel &quot;Pattern-Proof Malware Validation&quot; (PoPMV) algorithm designed for blockchain in ICPS. It exploits a deep learning model (LSTM) with reinforcement learning techniques to receive feedback and rewards in real-time. The primary objective is to mitigate security vulnerabilities, enhance processing speed, identify both familiar and unfamiliar attacks, and optimize the functionality of ICPS. Simulations demonstrate the superiority of the proposed approach compared to current blockchain frameworks, showcasing dynamic allocation of microservices and improved security with comprehensive attack detection by 30%. (C) 2023 The Author(s)

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Applications of Artificial Intelligence

  • ISSN

    0952-1976

  • e-ISSN

  • Svazek periodika

    129

  • Číslo periodika v rámci svazku

    2024

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    "nestrankovano"

  • Kód UT WoS článku

    001134750700001

  • EID výsledku v databázi Scopus

    2-s2.0-85179001796