Artificial Intelligence and Machine Learning in Electronic Fetal Monitoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254250" target="_blank" >RIV/61989100:27240/24:10254250 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11831-023-10055-6" target="_blank" >https://link.springer.com/article/10.1007/s11831-023-10055-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11831-023-10055-6" target="_blank" >10.1007/s11831-023-10055-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Intelligence and Machine Learning in Electronic Fetal Monitoring
Popis výsledku v původním jazyce
Electronic fetal monitoring is used to evaluate fetal well-being by assessing fetal heart activity. The signals produced by the fetal heart carry valuable information about fetal health, but due to non-stationarity and present interference, their processing, analysis and interpretation is considered to be very challenging. Therefore, medical technologies equipped with Artificial Intelligence algorithms are rapidly evolving into clinical practice and provide solutions in the key application areas: noise suppression, feature detection and fetal state classification. The use of artificial intelligence and machine learning in the field of electronic fetal monitoring has demonstrated the efficiency and superiority of such techniques compared to conventional algorithms, especially due to their ability to predict, learn and efficiently handle dynamic Big data. Combining multiple algorithms and optimizing them for given purpose enables timely and accurate diagnosis of fetal health state. This review summarizes the currently used algorithms based on artificial intelligence and machine learning in the field of electronic fetal monitoring, outlines its advantages and limitations, as well as future challenges which remain to be solved.
Název v anglickém jazyce
Artificial Intelligence and Machine Learning in Electronic Fetal Monitoring
Popis výsledku anglicky
Electronic fetal monitoring is used to evaluate fetal well-being by assessing fetal heart activity. The signals produced by the fetal heart carry valuable information about fetal health, but due to non-stationarity and present interference, their processing, analysis and interpretation is considered to be very challenging. Therefore, medical technologies equipped with Artificial Intelligence algorithms are rapidly evolving into clinical practice and provide solutions in the key application areas: noise suppression, feature detection and fetal state classification. The use of artificial intelligence and machine learning in the field of electronic fetal monitoring has demonstrated the efficiency and superiority of such techniques compared to conventional algorithms, especially due to their ability to predict, learn and efficiently handle dynamic Big data. Combining multiple algorithms and optimizing them for given purpose enables timely and accurate diagnosis of fetal health state. This review summarizes the currently used algorithms based on artificial intelligence and machine learning in the field of electronic fetal monitoring, outlines its advantages and limitations, as well as future challenges which remain to be solved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archives of Computational Methods in Engineering
ISSN
1134-3060
e-ISSN
1886-1784
Svazek periodika
1
Číslo periodika v rámci svazku
31 January 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
32
Strana od-do
1-32
Kód UT WoS článku
001152700200001
EID výsledku v databázi Scopus
—