Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Facial Emotion Recognition for Mobile Devices: A Practical Review

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254297" target="_blank" >RIV/61989100:27240/24:10254297 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10414102" target="_blank" >https://ieeexplore.ieee.org/document/10414102</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3358455" target="_blank" >10.1109/ACCESS.2024.3358455</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Facial Emotion Recognition for Mobile Devices: A Practical Review

  • Popis výsledku v původním jazyce

    Communicating via email or various chat applications on smartphones is part of most people&apos;s daily lives. But in written form, human communication loses a lot of valuable information, such as the facial expressions and emotions of the person you are communicating with. Thanks to techniques from the field of image processing, it is now possible to capture these non-verbal phenomena, and supplement written input with their non-verbal characteristics. In this paper, we explore the possibilities of emotion recognition from front camera images in mobile and embedded devices. A total of 63 classification and 28 regression models based on twelve different neural network architectures optimized for low performance mobile devices were trained and evaluated for success rate and latency. The training and evaluation of each neural network model is performed within the Keras API of the TensorFlow library and then converted to the TensorFlow Lite standard to reduce memory and computational requirements. Great care is taken to ensure that the entire process, from face detection to emotion classification, can operate in real time. To demonstrate and compare the performance of the evaluated models, a freely available optimized application running on Android mobile devices is created and published on Google Play, the source code of which is also available. (C) 2013 IEEE.

  • Název v anglickém jazyce

    Facial Emotion Recognition for Mobile Devices: A Practical Review

  • Popis výsledku anglicky

    Communicating via email or various chat applications on smartphones is part of most people&apos;s daily lives. But in written form, human communication loses a lot of valuable information, such as the facial expressions and emotions of the person you are communicating with. Thanks to techniques from the field of image processing, it is now possible to capture these non-verbal phenomena, and supplement written input with their non-verbal characteristics. In this paper, we explore the possibilities of emotion recognition from front camera images in mobile and embedded devices. A total of 63 classification and 28 regression models based on twelve different neural network architectures optimized for low performance mobile devices were trained and evaluated for success rate and latency. The training and evaluation of each neural network model is performed within the Keras API of the TensorFlow library and then converted to the TensorFlow Lite standard to reduce memory and computational requirements. Great care is taken to ensure that the entire process, from face detection to emotion classification, can operate in real time. To demonstrate and compare the performance of the evaluated models, a freely available optimized application running on Android mobile devices is created and published on Google Play, the source code of which is also available. (C) 2013 IEEE.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    25 January 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    15735-15747

  • Kód UT WoS článku

    001161068800001

  • EID výsledku v databázi Scopus

    2-s2.0-85183951109