Facial Emotion Recognition for Mobile Devices: A Practical Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254297" target="_blank" >RIV/61989100:27240/24:10254297 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10414102" target="_blank" >https://ieeexplore.ieee.org/document/10414102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3358455" target="_blank" >10.1109/ACCESS.2024.3358455</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Facial Emotion Recognition for Mobile Devices: A Practical Review
Popis výsledku v původním jazyce
Communicating via email or various chat applications on smartphones is part of most people's daily lives. But in written form, human communication loses a lot of valuable information, such as the facial expressions and emotions of the person you are communicating with. Thanks to techniques from the field of image processing, it is now possible to capture these non-verbal phenomena, and supplement written input with their non-verbal characteristics. In this paper, we explore the possibilities of emotion recognition from front camera images in mobile and embedded devices. A total of 63 classification and 28 regression models based on twelve different neural network architectures optimized for low performance mobile devices were trained and evaluated for success rate and latency. The training and evaluation of each neural network model is performed within the Keras API of the TensorFlow library and then converted to the TensorFlow Lite standard to reduce memory and computational requirements. Great care is taken to ensure that the entire process, from face detection to emotion classification, can operate in real time. To demonstrate and compare the performance of the evaluated models, a freely available optimized application running on Android mobile devices is created and published on Google Play, the source code of which is also available. (C) 2013 IEEE.
Název v anglickém jazyce
Facial Emotion Recognition for Mobile Devices: A Practical Review
Popis výsledku anglicky
Communicating via email or various chat applications on smartphones is part of most people's daily lives. But in written form, human communication loses a lot of valuable information, such as the facial expressions and emotions of the person you are communicating with. Thanks to techniques from the field of image processing, it is now possible to capture these non-verbal phenomena, and supplement written input with their non-verbal characteristics. In this paper, we explore the possibilities of emotion recognition from front camera images in mobile and embedded devices. A total of 63 classification and 28 regression models based on twelve different neural network architectures optimized for low performance mobile devices were trained and evaluated for success rate and latency. The training and evaluation of each neural network model is performed within the Keras API of the TensorFlow library and then converted to the TensorFlow Lite standard to reduce memory and computational requirements. Great care is taken to ensure that the entire process, from face detection to emotion classification, can operate in real time. To demonstrate and compare the performance of the evaluated models, a freely available optimized application running on Android mobile devices is created and published on Google Play, the source code of which is also available. (C) 2013 IEEE.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
12
Číslo periodika v rámci svazku
25 January 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
15735-15747
Kód UT WoS článku
001161068800001
EID výsledku v databázi Scopus
2-s2.0-85183951109