An improved classifier and transliterator of hand-written Palmyrene letters to Latin
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60460709%3A41110%2F22%3A94074" target="_blank" >RIV/60460709:41110/22:94074 - isvavai.cz</a>
Výsledek na webu
<a href="http://nnw.cz/obsahy22.html" target="_blank" >http://nnw.cz/obsahy22.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2022.32.011" target="_blank" >10.14311/NNW.2022.32.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An improved classifier and transliterator of hand-written Palmyrene letters to Latin
Popis výsledku v původním jazyce
This article presents the problem of improving the classifier of handwritten letters from historical alphabets, using letter classification algorithms and transliterating them to Latin. We apply it on Palmyrene alphabet, which is a complex alphabet with letters, some of which are very similar to each other. We created a mobile application for Palmyrene alphabet that is able to transliterate hand-written letters or letters that are given as photograph images. At first, the core of the application was based on MobileNet, but the classification results were not suitable enough. In this article, we suggest an improved, better performing convolutional neural network architecture for hand-written letter classifier used in our mobile application. Our suggested new convolutional neural network architecture shows an improvement in accuracy from 0,6893 to 0,9821 by 142 % for hand-written model in comparison with the original MobileNet. Future plans are to improve the photographic model as well.
Název v anglickém jazyce
An improved classifier and transliterator of hand-written Palmyrene letters to Latin
Popis výsledku anglicky
This article presents the problem of improving the classifier of handwritten letters from historical alphabets, using letter classification algorithms and transliterating them to Latin. We apply it on Palmyrene alphabet, which is a complex alphabet with letters, some of which are very similar to each other. We created a mobile application for Palmyrene alphabet that is able to transliterate hand-written letters or letters that are given as photograph images. At first, the core of the application was based on MobileNet, but the classification results were not suitable enough. In this article, we suggest an improved, better performing convolutional neural network architecture for hand-written letter classifier used in our mobile application. Our suggested new convolutional neural network architecture shows an improvement in accuracy from 0,6893 to 0,9821 by 142 % for hand-written model in comparison with the original MobileNet. Future plans are to improve the photographic model as well.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
1210-0552
Svazek periodika
32
Číslo periodika v rámci svazku
4 2022
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
15
Strana od-do
181-195
Kód UT WoS článku
000912363100001
EID výsledku v databázi Scopus
2-s2.0-85147326925