Abstractive text summarization model combining a hierarchical attention mechanism and multiobjective reinforcement learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254656" target="_blank" >RIV/61989100:27240/24:10254656 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417424002215?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417424002215?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2024.123356" target="_blank" >10.1016/j.eswa.2024.123356</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Abstractive text summarization model combining a hierarchical attention mechanism and multiobjective reinforcement learning
Popis výsledku v původním jazyce
Text summarization research is significant and challenging in the domain of natural language processing. Abstractive text summarization mainly uses the encoder-decoder framework, wherein the encoder component does not have a sufficient semantic comprehension of the input text, and there are exposure biases and semantic inconsistencies between the reference and generated summaries during the training process. We propose an improved encoder-decoder model that incorporates a hierarchical attention mechanism and multiobjective reinforcement learning. The encoder introduces a multihead self-attention mechanism to allow for the acquisition of more comprehensive semantic information from multiple angles and dimensions, while the decoder introduces a pointer-generator network to solve the out-of-vocabulary problem. Multiobjective reinforcement learning methods are constructed throughout the training process to optimize the model in terms of addressing exposure bias, maintaining semantic consistency, and enhancing readability. The results of the comparative experiments demonstrate that the proposed model significantly improved in terms of the ROUGE evaluation metric, and the generated summaries were semantically similar to the reference summaries. (C) 2024 Elsevier Ltd
Název v anglickém jazyce
Abstractive text summarization model combining a hierarchical attention mechanism and multiobjective reinforcement learning
Popis výsledku anglicky
Text summarization research is significant and challenging in the domain of natural language processing. Abstractive text summarization mainly uses the encoder-decoder framework, wherein the encoder component does not have a sufficient semantic comprehension of the input text, and there are exposure biases and semantic inconsistencies between the reference and generated summaries during the training process. We propose an improved encoder-decoder model that incorporates a hierarchical attention mechanism and multiobjective reinforcement learning. The encoder introduces a multihead self-attention mechanism to allow for the acquisition of more comprehensive semantic information from multiple angles and dimensions, while the decoder introduces a pointer-generator network to solve the out-of-vocabulary problem. Multiobjective reinforcement learning methods are constructed throughout the training process to optimize the model in terms of addressing exposure bias, maintaining semantic consistency, and enhancing readability. The results of the comparative experiments demonstrate that the proposed model significantly improved in terms of the ROUGE evaluation metric, and the generated summaries were semantically similar to the reference summaries. (C) 2024 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
248
Číslo periodika v rámci svazku
AUG 15 2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
001186959800001
EID výsledku v databázi Scopus
2-s2.0-85185263358