Detection of myocardial infarction using analysis of vectorcardiographic loops
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254725" target="_blank" >RIV/61989100:27240/24:10254725 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0263224123016585" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0263224123016585</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.measurement.2023.114094" target="_blank" >10.1016/j.measurement.2023.114094</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of myocardial infarction using analysis of vectorcardiographic loops
Popis výsledku v původním jazyce
Vectorcardiography is an alternative form of ECG for measuring electrical activity of the heart. It achieves higher sensitivity and provides the cardiologist additional information that can contribute to early diagnosis. This study is focused on proposal of a methodology for the processing of directly measured and transformed VCG records by using Kors regression transformation. A total 16 VCG features were extracted, while 12 features showed relevant information based on the statistical analysis and the method of maximum relevance minimum redundancy. These features served as input to the LDA and decision trees classifiers, while LDA achieved the most accurate results with accuracy 91.5%, specificity 76.3% and sensitivity 94.8% for directly measured VCG and accuracy 90.9%, specificity 76.3% and sensitivity 94.0% for transformed VCG. We conclude that this proposed methodology and the results obtained from it can be beneficial for the early diagnosis of myocardial infarction within the framework of automated detection.
Název v anglickém jazyce
Detection of myocardial infarction using analysis of vectorcardiographic loops
Popis výsledku anglicky
Vectorcardiography is an alternative form of ECG for measuring electrical activity of the heart. It achieves higher sensitivity and provides the cardiologist additional information that can contribute to early diagnosis. This study is focused on proposal of a methodology for the processing of directly measured and transformed VCG records by using Kors regression transformation. A total 16 VCG features were extracted, while 12 features showed relevant information based on the statistical analysis and the method of maximum relevance minimum redundancy. These features served as input to the LDA and decision trees classifiers, while LDA achieved the most accurate results with accuracy 91.5%, specificity 76.3% and sensitivity 94.8% for directly measured VCG and accuracy 90.9%, specificity 76.3% and sensitivity 94.0% for transformed VCG. We conclude that this proposed methodology and the results obtained from it can be beneficial for the early diagnosis of myocardial infarction within the framework of automated detection.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20600 - Medical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Measurement
ISSN
0263-2241
e-ISSN
1873-412X
Svazek periodika
226
Číslo periodika v rámci svazku
28 February 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
001158678200001
EID výsledku v databázi Scopus
2-s2.0-85181942185