Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Load Monitoring and Appliance Recognition Using an Inexpensive, Low-Frequency, Data-to-Image, Neural Network, and Network Mobility Approach for Domestic IoT Systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255067" target="_blank" >RIV/61989100:27240/24:10255067 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/24:10255067

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10347444" target="_blank" >https://ieeexplore.ieee.org/document/10347444</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JIOT.2023.3340423" target="_blank" >10.1109/JIOT.2023.3340423</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Load Monitoring and Appliance Recognition Using an Inexpensive, Low-Frequency, Data-to-Image, Neural Network, and Network Mobility Approach for Domestic IoT Systems

  • Popis výsledku v původním jazyce

    With the low integration costs and quick development cycle of all-IP-based 5G+ technologies, it is not surprising that the proliferation of IP devices for residential or industrial purposes is ubiquitous. Energy scheduling/management and automated device recognition are popular research areas in the engineering community, and much time and work have been invested in producing the systems required for smart city networks. However, most proposed approaches involve expensive and invasive equipment that produces huge volumes of data (high-frequency complexity) for analysis by supervised learning algorithms. In contrast to other studies in the literature, we propose an approach based on encoding consumption data into vehicular mobility and imaging systems to apply a simple convolutional neural network to recognize certain scenarios (devices powered on) in real time and based on the nonintrusive load monitoring paradigm. Our idea is based on a very cheap device and can be adapted at a very low cost for any real scenario. We have also created our own data set, taken from a real domestic environment, contrary to most existing works based on synthetic data. The results of the study&apos;s simulation demonstrate the effectiveness of this innovative and low-cost approach and its scalability in function of the number of considered appliances.

  • Název v anglickém jazyce

    Load Monitoring and Appliance Recognition Using an Inexpensive, Low-Frequency, Data-to-Image, Neural Network, and Network Mobility Approach for Domestic IoT Systems

  • Popis výsledku anglicky

    With the low integration costs and quick development cycle of all-IP-based 5G+ technologies, it is not surprising that the proliferation of IP devices for residential or industrial purposes is ubiquitous. Energy scheduling/management and automated device recognition are popular research areas in the engineering community, and much time and work have been invested in producing the systems required for smart city networks. However, most proposed approaches involve expensive and invasive equipment that produces huge volumes of data (high-frequency complexity) for analysis by supervised learning algorithms. In contrast to other studies in the literature, we propose an approach based on encoding consumption data into vehicular mobility and imaging systems to apply a simple convolutional neural network to recognize certain scenarios (devices powered on) in real time and based on the nonintrusive load monitoring paradigm. Our idea is based on a very cheap device and can be adapted at a very low cost for any real scenario. We have also created our own data set, taken from a real domestic environment, contrary to most existing works based on synthetic data. The results of the study&apos;s simulation demonstrate the effectiveness of this innovative and low-cost approach and its scalability in function of the number of considered appliances.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Internet of Things Journal

  • ISSN

    2327-4662

  • e-ISSN

    2327-4662

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    19

  • Strana od-do

    13961-13979

  • Kód UT WoS článku

    001203466500057

  • EID výsledku v databázi Scopus