Load Monitoring and Appliance Recognition Using an Inexpensive, Low-Frequency, Data-to-Image, Neural Network, and Network Mobility Approach for Domestic IoT Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255067" target="_blank" >RIV/61989100:27240/24:10255067 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10255067
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10347444" target="_blank" >https://ieeexplore.ieee.org/document/10347444</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JIOT.2023.3340423" target="_blank" >10.1109/JIOT.2023.3340423</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Load Monitoring and Appliance Recognition Using an Inexpensive, Low-Frequency, Data-to-Image, Neural Network, and Network Mobility Approach for Domestic IoT Systems
Popis výsledku v původním jazyce
With the low integration costs and quick development cycle of all-IP-based 5G+ technologies, it is not surprising that the proliferation of IP devices for residential or industrial purposes is ubiquitous. Energy scheduling/management and automated device recognition are popular research areas in the engineering community, and much time and work have been invested in producing the systems required for smart city networks. However, most proposed approaches involve expensive and invasive equipment that produces huge volumes of data (high-frequency complexity) for analysis by supervised learning algorithms. In contrast to other studies in the literature, we propose an approach based on encoding consumption data into vehicular mobility and imaging systems to apply a simple convolutional neural network to recognize certain scenarios (devices powered on) in real time and based on the nonintrusive load monitoring paradigm. Our idea is based on a very cheap device and can be adapted at a very low cost for any real scenario. We have also created our own data set, taken from a real domestic environment, contrary to most existing works based on synthetic data. The results of the study's simulation demonstrate the effectiveness of this innovative and low-cost approach and its scalability in function of the number of considered appliances.
Název v anglickém jazyce
Load Monitoring and Appliance Recognition Using an Inexpensive, Low-Frequency, Data-to-Image, Neural Network, and Network Mobility Approach for Domestic IoT Systems
Popis výsledku anglicky
With the low integration costs and quick development cycle of all-IP-based 5G+ technologies, it is not surprising that the proliferation of IP devices for residential or industrial purposes is ubiquitous. Energy scheduling/management and automated device recognition are popular research areas in the engineering community, and much time and work have been invested in producing the systems required for smart city networks. However, most proposed approaches involve expensive and invasive equipment that produces huge volumes of data (high-frequency complexity) for analysis by supervised learning algorithms. In contrast to other studies in the literature, we propose an approach based on encoding consumption data into vehicular mobility and imaging systems to apply a simple convolutional neural network to recognize certain scenarios (devices powered on) in real time and based on the nonintrusive load monitoring paradigm. Our idea is based on a very cheap device and can be adapted at a very low cost for any real scenario. We have also created our own data set, taken from a real domestic environment, contrary to most existing works based on synthetic data. The results of the study's simulation demonstrate the effectiveness of this innovative and low-cost approach and its scalability in function of the number of considered appliances.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Internet of Things Journal
ISSN
2327-4662
e-ISSN
2327-4662
Svazek periodika
11
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
13961-13979
Kód UT WoS článku
001203466500057
EID výsledku v databázi Scopus
—