An Overview of a New Statistical Non-Intrusive Load Monitoring (NILM) Analysis and Recognition Approach for Domestic Environments: DENARDO
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256300" target="_blank" >RIV/61989100:27240/24:10256300 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10256300
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10615815" target="_blank" >https://ieeexplore.ieee.org/document/10615815</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/MetroLivEnv60384.2024.10615815" target="_blank" >10.1109/MetroLivEnv60384.2024.10615815</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Overview of a New Statistical Non-Intrusive Load Monitoring (NILM) Analysis and Recognition Approach for Domestic Environments: DENARDO
Popis výsledku v původním jazyce
IP devices are ubiquitously spread, for both residential and industrial purposes, thanks to the low integration costs and rapid development cycle of all-IP-based 5G+ technologies. As a consequence, the engineering community now considers their automatization and energy scheduling/management as relevant research fields. These topics have a striking relevance also for the development of smart city networks. As a drawback, most ID-device applications produce a large amount of data (high-frequency complexity), requiring supervised machine learning algorithms to be properly analyzed. In this research, we focus on the performance of vehicular mobility and imaging systems, recognizing scenarios (with powered-on devices) in real-time, with the help of a simple convolutional neural network, proving the effectiveness of such an innovative low-cost approach.
Název v anglickém jazyce
An Overview of a New Statistical Non-Intrusive Load Monitoring (NILM) Analysis and Recognition Approach for Domestic Environments: DENARDO
Popis výsledku anglicky
IP devices are ubiquitously spread, for both residential and industrial purposes, thanks to the low integration costs and rapid development cycle of all-IP-based 5G+ technologies. As a consequence, the engineering community now considers their automatization and energy scheduling/management as relevant research fields. These topics have a striking relevance also for the development of smart city networks. As a drawback, most ID-device applications produce a large amount of data (high-frequency complexity), requiring supervised machine learning algorithms to be properly analyzed. In this research, we focus on the performance of vehicular mobility and imaging systems, recognizing scenarios (with powered-on devices) in real-time, with the help of a simple convolutional neural network, proving the effectiveness of such an innovative low-cost approach.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE International Workshop on Metrology for Living Environment, MetroLivEnv 2024 : proceedings
ISBN
979-8-3503-8502-1
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
465-469
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Chania
Datum konání akce
12. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—