Nanoarchitectonics of Laser Induced MAX 3D-Printed Electrode for Photo-Electrocatalysis and Energy Storage Application with Long Cyclic Durability of 100 000 Cycles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255084" target="_blank" >RIV/61989100:27240/24:10255084 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43210/24:43925271
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001248791600001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001248791600001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202407071" target="_blank" >10.1002/adfm.202407071</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanoarchitectonics of Laser Induced MAX 3D-Printed Electrode for Photo-Electrocatalysis and Energy Storage Application with Long Cyclic Durability of 100 000 Cycles
Popis výsledku v původním jazyce
3D printing, a rapidly expanding domain of additive manufacturing, enables the fabrication of intricate 3D structures with adjustable fabrication parameters and scalability. Nonetheless, post-fabrication, 3D-printed materials often require an activation step to eliminate non-conductive polymers, a process traditionally achieved through chemical, thermal, or electrochemical methods. These conventional activation techniques, however, suffer from inefficiency and inconsistent results. In this study, a novel chemical-free activation method employing laser treatment is introduced. This innovative technique effectively activates 3D-printed electrodes, which are then evaluated for their photo and electrochemical performance against traditional solvent-activated counterparts. The method not only precisely ablates surplus non-conductive polymers but also exposes and activates the underlying electroactive materials. The 3D-printed electrodes, processed with this single-step laser approach, exhibit a notably low overpotential of ALMOST EQUAL TO505 mV at a current density of MINUS SIGN 10 mA cmMINUS SIGN 2 under an illumination wavelength of 365 nm. These electrodes also demonstrate exceptional durability, maintaining stability through >100 000 cycles in energy storage applications. By amalgamating 3D printing with laser processing, the creation of electrodes with complex structures and customizable properties is enabled. This synergy paves the way for streamlined production of such devices in the field of energy conversion and storage. (C) 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
Název v anglickém jazyce
Nanoarchitectonics of Laser Induced MAX 3D-Printed Electrode for Photo-Electrocatalysis and Energy Storage Application with Long Cyclic Durability of 100 000 Cycles
Popis výsledku anglicky
3D printing, a rapidly expanding domain of additive manufacturing, enables the fabrication of intricate 3D structures with adjustable fabrication parameters and scalability. Nonetheless, post-fabrication, 3D-printed materials often require an activation step to eliminate non-conductive polymers, a process traditionally achieved through chemical, thermal, or electrochemical methods. These conventional activation techniques, however, suffer from inefficiency and inconsistent results. In this study, a novel chemical-free activation method employing laser treatment is introduced. This innovative technique effectively activates 3D-printed electrodes, which are then evaluated for their photo and electrochemical performance against traditional solvent-activated counterparts. The method not only precisely ablates surplus non-conductive polymers but also exposes and activates the underlying electroactive materials. The 3D-printed electrodes, processed with this single-step laser approach, exhibit a notably low overpotential of ALMOST EQUAL TO505 mV at a current density of MINUS SIGN 10 mA cmMINUS SIGN 2 under an illumination wavelength of 365 nm. These electrodes also demonstrate exceptional durability, maintaining stability through >100 000 cycles in energy storage applications. By amalgamating 3D printing with laser processing, the creation of electrodes with complex structures and customizable properties is enabled. This synergy paves the way for streamlined production of such devices in the field of energy conversion and storage. (C) 2024 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
2024
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
001248791600001
EID výsledku v databázi Scopus
2-s2.0-85195883601