3D Printed Nanocarbon Frameworks for Li-Ion Battery Cathodes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F21%3A43919155" target="_blank" >RIV/62156489:43210/21:43919155 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/21:PU140772
Výsledek na webu
<a href="https://doi.org/10.1002/adfm.202007285" target="_blank" >https://doi.org/10.1002/adfm.202007285</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.202007285" target="_blank" >10.1002/adfm.202007285</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Printed Nanocarbon Frameworks for Li-Ion Battery Cathodes
Popis výsledku v původním jazyce
The use of conductive carbon materials in 3D-printing is attracting growing academic and industrial attention in electrochemical energy storage due to the high customization and on-demand capabilities of the additive manufacturing. However, typical polymers used in conductive filaments for 3D printing show high resistivity and low compatibility with electrochemical energy applications. Removal of insulating thermoplastics in as-printed materials is a common post-printing strategy, however, excessive loss of thermoplastics can weaken the structural integrity. This work reports a two-step surface engineering methodology for fabrication of 3D-printed carbon materials for electrochemical applications, incorporating conductive poly(ortho-phenylenediamine) (PoPD) via electrodeposition. A conductive PoPD effectively enhances the electrochemical activities of 3D-printed frameworks. When PoPD-refilled frameworks casted with LiMn2O4 (LMO) composite materials used as battery cathode, it delivers a capacity of 69.1 mAh gMINUS SIGN 1 at a current density of 0.036 mA cmMINUS SIGN 2 (ALMOST EQUAL TO1.2 C discharge rate) and good cyclability with a retained capacity of 84.4% after 200 cycles at 0.36 mA cmMINUS SIGN 2. This work provides a pathway for developing electroactive 3D-printed electrodes particularly with cost-efficient low-dimensional carbon materials for aqueous rechargeable Li-ion batteries.
Název v anglickém jazyce
3D Printed Nanocarbon Frameworks for Li-Ion Battery Cathodes
Popis výsledku anglicky
The use of conductive carbon materials in 3D-printing is attracting growing academic and industrial attention in electrochemical energy storage due to the high customization and on-demand capabilities of the additive manufacturing. However, typical polymers used in conductive filaments for 3D printing show high resistivity and low compatibility with electrochemical energy applications. Removal of insulating thermoplastics in as-printed materials is a common post-printing strategy, however, excessive loss of thermoplastics can weaken the structural integrity. This work reports a two-step surface engineering methodology for fabrication of 3D-printed carbon materials for electrochemical applications, incorporating conductive poly(ortho-phenylenediamine) (PoPD) via electrodeposition. A conductive PoPD effectively enhances the electrochemical activities of 3D-printed frameworks. When PoPD-refilled frameworks casted with LiMn2O4 (LMO) composite materials used as battery cathode, it delivers a capacity of 69.1 mAh gMINUS SIGN 1 at a current density of 0.036 mA cmMINUS SIGN 2 (ALMOST EQUAL TO1.2 C discharge rate) and good cyclability with a retained capacity of 84.4% after 200 cycles at 0.36 mA cmMINUS SIGN 2. This work provides a pathway for developing electroactive 3D-printed electrodes particularly with cost-efficient low-dimensional carbon materials for aqueous rechargeable Li-ion batteries.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
2007285
Kód UT WoS článku
000607632700001
EID výsledku v databázi Scopus
2-s2.0-85099390531