Multi-agent reinforcement learning framework based on information fusion biometric ticketing data in different public transport modes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255109" target="_blank" >RIV/61989100:27240/24:10255109 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1566253524002495" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1566253524002495</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.inffus.2024.102471" target="_blank" >10.1016/j.inffus.2024.102471</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-agent reinforcement learning framework based on information fusion biometric ticketing data in different public transport modes
Popis výsledku v původním jazyce
In smart cities, biometric technologies have become extensively used for ticket authentication on public transport. Information fusion plays a key role in biometric ticketing, allowing ticket validation with more data source validation in different public transport modes. This paper proposes a novel biometric technology-based mobile ticket application-based system. We formulate the problem as a multi-agent reinforcement learning framework for biometric ticketing in multi-transport environments. Specifically, we propose the Asynchronous Advantage Critic Biometric Ticketing Framework (A3CBTF) algorithm, which consists of different schemes based on the proposed system. The proposed algorithm framework operates in hybrid transport modes using a parallel reinforcement learning scheme. A key advantage of A3CBTF is that it enables passengers to use a single ticket for various public transport modes. Additionally, even when a passenger's mobile device is stolen, lost, or has a dead battery, they can still validate their tickets through different information fusion sources, such as fingerprint and face recognition. A3CBTF is a multi-agent system that integrates mobile, transport, edge, and cloud servers to facilitate ticket validation in a distributed environment. By optimizing both convex and concave optimizations, A3CBTF ensures efficient ticket validation with minimal processing time and maximizes validation rewards across different biometric technologies. Experimental results demonstrate that A3CBTF outperforms mobile off with other options such as fingerprint and face recognition in public transport as compared to other ticketing systems. (C) 2024 The Author(s)
Název v anglickém jazyce
Multi-agent reinforcement learning framework based on information fusion biometric ticketing data in different public transport modes
Popis výsledku anglicky
In smart cities, biometric technologies have become extensively used for ticket authentication on public transport. Information fusion plays a key role in biometric ticketing, allowing ticket validation with more data source validation in different public transport modes. This paper proposes a novel biometric technology-based mobile ticket application-based system. We formulate the problem as a multi-agent reinforcement learning framework for biometric ticketing in multi-transport environments. Specifically, we propose the Asynchronous Advantage Critic Biometric Ticketing Framework (A3CBTF) algorithm, which consists of different schemes based on the proposed system. The proposed algorithm framework operates in hybrid transport modes using a parallel reinforcement learning scheme. A key advantage of A3CBTF is that it enables passengers to use a single ticket for various public transport modes. Additionally, even when a passenger's mobile device is stolen, lost, or has a dead battery, they can still validate their tickets through different information fusion sources, such as fingerprint and face recognition. A3CBTF is a multi-agent system that integrates mobile, transport, edge, and cloud servers to facilitate ticket validation in a distributed environment. By optimizing both convex and concave optimizations, A3CBTF ensures efficient ticket validation with minimal processing time and maximizes validation rewards across different biometric technologies. Experimental results demonstrate that A3CBTF outperforms mobile off with other options such as fingerprint and face recognition in public transport as compared to other ticketing systems. (C) 2024 The Author(s)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Fusion
ISSN
1566-2535
e-ISSN
—
Svazek periodika
110
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
001264184600001
EID výsledku v databázi Scopus
2-s2.0-85193721347