Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-agent reinforcement learning framework based on information fusion biometric ticketing data in different public transport modes

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255109" target="_blank" >RIV/61989100:27240/24:10255109 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1566253524002495" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1566253524002495</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.inffus.2024.102471" target="_blank" >10.1016/j.inffus.2024.102471</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-agent reinforcement learning framework based on information fusion biometric ticketing data in different public transport modes

  • Popis výsledku v původním jazyce

    In smart cities, biometric technologies have become extensively used for ticket authentication on public transport. Information fusion plays a key role in biometric ticketing, allowing ticket validation with more data source validation in different public transport modes. This paper proposes a novel biometric technology-based mobile ticket application-based system. We formulate the problem as a multi-agent reinforcement learning framework for biometric ticketing in multi-transport environments. Specifically, we propose the Asynchronous Advantage Critic Biometric Ticketing Framework (A3CBTF) algorithm, which consists of different schemes based on the proposed system. The proposed algorithm framework operates in hybrid transport modes using a parallel reinforcement learning scheme. A key advantage of A3CBTF is that it enables passengers to use a single ticket for various public transport modes. Additionally, even when a passenger&apos;s mobile device is stolen, lost, or has a dead battery, they can still validate their tickets through different information fusion sources, such as fingerprint and face recognition. A3CBTF is a multi-agent system that integrates mobile, transport, edge, and cloud servers to facilitate ticket validation in a distributed environment. By optimizing both convex and concave optimizations, A3CBTF ensures efficient ticket validation with minimal processing time and maximizes validation rewards across different biometric technologies. Experimental results demonstrate that A3CBTF outperforms mobile off with other options such as fingerprint and face recognition in public transport as compared to other ticketing systems. (C) 2024 The Author(s)

  • Název v anglickém jazyce

    Multi-agent reinforcement learning framework based on information fusion biometric ticketing data in different public transport modes

  • Popis výsledku anglicky

    In smart cities, biometric technologies have become extensively used for ticket authentication on public transport. Information fusion plays a key role in biometric ticketing, allowing ticket validation with more data source validation in different public transport modes. This paper proposes a novel biometric technology-based mobile ticket application-based system. We formulate the problem as a multi-agent reinforcement learning framework for biometric ticketing in multi-transport environments. Specifically, we propose the Asynchronous Advantage Critic Biometric Ticketing Framework (A3CBTF) algorithm, which consists of different schemes based on the proposed system. The proposed algorithm framework operates in hybrid transport modes using a parallel reinforcement learning scheme. A key advantage of A3CBTF is that it enables passengers to use a single ticket for various public transport modes. Additionally, even when a passenger&apos;s mobile device is stolen, lost, or has a dead battery, they can still validate their tickets through different information fusion sources, such as fingerprint and face recognition. A3CBTF is a multi-agent system that integrates mobile, transport, edge, and cloud servers to facilitate ticket validation in a distributed environment. By optimizing both convex and concave optimizations, A3CBTF ensures efficient ticket validation with minimal processing time and maximizes validation rewards across different biometric technologies. Experimental results demonstrate that A3CBTF outperforms mobile off with other options such as fingerprint and face recognition in public transport as compared to other ticketing systems. (C) 2024 The Author(s)

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Information Fusion

  • ISSN

    1566-2535

  • e-ISSN

  • Svazek periodika

    110

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

  • Kód UT WoS článku

    001264184600001

  • EID výsledku v databázi Scopus

    2-s2.0-85193721347