Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Aqueous Multivalent Metal-ion Batteries: Toward 3D-printed Architectures

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255230" target="_blank" >RIV/61989100:27240/24:10255230 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/smll.202404227" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/smll.202404227</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/smll.202404227" target="_blank" >10.1002/smll.202404227</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Aqueous Multivalent Metal-ion Batteries: Toward 3D-printed Architectures

  • Popis výsledku v původním jazyce

    Energy storage has become increasingly crucial, necessitating alternatives to lithium-ion batteries due to critical supply constraints. Aqueous multivalent metal-ion batteries (AMVIBs) offer significant potential for large-scale energy storage, leveraging the high abundance and environmentally benign nature of elements like zinc, magnesium, calcium, and aluminum in the Earth&apos;s crust. However, the slow ion diffusion kinetics and stability issues of cathode materials pose significant technical challenges, raising concerns about the future viability of AMVIB technologies. Recent research has focused on nanoengineering cathodes to address these issues, but practical implementation is limited by low mass-loading. Therefore, developing effective engineering strategies for cathode materials is essential. This review introduces the 3D printing-enabled structural design of cathodes as a transformative strategy for advancing AMVIBs. It begins by summarizing recent developments and common challenges in cathode materials for AMVIBs and then illustrates various 3D-printed cathode structural designs aimed at overcoming the limitations of conventional cathode materials, highlighting pioneering work in this field. Finally, the review discusses the necessary technological advancements in 3D printing processes to further develop advanced 3D-printed AMVIBs. The reader will receive new fresh perspective on multivalent metal-ion batteries and the potential of additive technologies in this field.

  • Název v anglickém jazyce

    Aqueous Multivalent Metal-ion Batteries: Toward 3D-printed Architectures

  • Popis výsledku anglicky

    Energy storage has become increasingly crucial, necessitating alternatives to lithium-ion batteries due to critical supply constraints. Aqueous multivalent metal-ion batteries (AMVIBs) offer significant potential for large-scale energy storage, leveraging the high abundance and environmentally benign nature of elements like zinc, magnesium, calcium, and aluminum in the Earth&apos;s crust. However, the slow ion diffusion kinetics and stability issues of cathode materials pose significant technical challenges, raising concerns about the future viability of AMVIB technologies. Recent research has focused on nanoengineering cathodes to address these issues, but practical implementation is limited by low mass-loading. Therefore, developing effective engineering strategies for cathode materials is essential. This review introduces the 3D printing-enabled structural design of cathodes as a transformative strategy for advancing AMVIBs. It begins by summarizing recent developments and common challenges in cathode materials for AMVIBs and then illustrates various 3D-printed cathode structural designs aimed at overcoming the limitations of conventional cathode materials, highlighting pioneering work in this field. Finally, the review discusses the necessary technological advancements in 3D printing processes to further develop advanced 3D-printed AMVIBs. The reader will receive new fresh perspective on multivalent metal-ion batteries and the potential of additive technologies in this field.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Small

  • ISSN

    1613-6810

  • e-ISSN

    1613-6829

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    31

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    21

  • Strana od-do

    1-21

  • Kód UT WoS článku

    001284031900001

  • EID výsledku v databázi Scopus

    2-s2.0-85200330210