Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Priority-based scheduling in residential energy management systems integrated with renewable sources using adaptive Salp swarm algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255403" target="_blank" >RIV/61989100:27240/24:10255403 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/24:10255403

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2590123024008983" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590123024008983</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rineng.2024.102643" target="_blank" >10.1016/j.rineng.2024.102643</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Priority-based scheduling in residential energy management systems integrated with renewable sources using adaptive Salp swarm algorithm

  • Popis výsledku v původním jazyce

    With the remarkable growth and implementation of communication technology, sensors, and measurement equipment in the Smart Grid (SG) environment, demand side management (DSM) and demand response (DRs) can be easily implementable in residential energy systems integrated with renewable energy sources (RES). Looking at this perspective, this paper suggests an intelligent and dynamic load-priority-based scheduling optimal smart residential energy management system (REMS). The objectives to achieve through priority-based scheduling in the case of a residential energy management system are multi-focussed in terms of peak load reduction, consumer choice of consumption according to priority basis, and cost-effectiveness towards electricity price savings. The issues related to uncertainties with RES due to environmental dependency must be incorporated into the DSM. A single objective discrete formulation based on the Adaptive Salp Swarm Algorithm (ASSA) has been done on modelling and optimizing the crucial system parameters for scheduling, ideally the operation of residential appliances, along with the sources and prioritized-based loads available. System constraints, consumer priorities, energy source availability, uncertainties, and objectives are considered in the formulation to justify the approach that is feasible in real-time conditions. To enhance the search capabilities of SSA, the control parameters vary optimally in both the exploration and exploitation stages of searching. Comparative results with genetic algorithms (GA), particle swarm optimization (PSO), and conventional SSA are presented in different cases, such as (1) traditional homes without REMS, (ii) smart homes with REMS (iii) smart homes using REMS with RES. (C) 2024 The Author(s)

  • Název v anglickém jazyce

    Priority-based scheduling in residential energy management systems integrated with renewable sources using adaptive Salp swarm algorithm

  • Popis výsledku anglicky

    With the remarkable growth and implementation of communication technology, sensors, and measurement equipment in the Smart Grid (SG) environment, demand side management (DSM) and demand response (DRs) can be easily implementable in residential energy systems integrated with renewable energy sources (RES). Looking at this perspective, this paper suggests an intelligent and dynamic load-priority-based scheduling optimal smart residential energy management system (REMS). The objectives to achieve through priority-based scheduling in the case of a residential energy management system are multi-focussed in terms of peak load reduction, consumer choice of consumption according to priority basis, and cost-effectiveness towards electricity price savings. The issues related to uncertainties with RES due to environmental dependency must be incorporated into the DSM. A single objective discrete formulation based on the Adaptive Salp Swarm Algorithm (ASSA) has been done on modelling and optimizing the crucial system parameters for scheduling, ideally the operation of residential appliances, along with the sources and prioritized-based loads available. System constraints, consumer priorities, energy source availability, uncertainties, and objectives are considered in the formulation to justify the approach that is feasible in real-time conditions. To enhance the search capabilities of SSA, the control parameters vary optimally in both the exploration and exploitation stages of searching. Comparative results with genetic algorithms (GA), particle swarm optimization (PSO), and conventional SSA are presented in different cases, such as (1) traditional homes without REMS, (ii) smart homes with REMS (iii) smart homes using REMS with RES. (C) 2024 The Author(s)

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Engineering

  • ISSN

    2590-1230

  • e-ISSN

    2590-1230

  • Svazek periodika

    23

  • Číslo periodika v rámci svazku

    September 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    001287742400001

  • EID výsledku v databázi Scopus

    2-s2.0-85200128019