Priority-based scheduling in residential energy management systems integrated with renewable sources using adaptive Salp swarm algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255403" target="_blank" >RIV/61989100:27240/24:10255403 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10255403
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2590123024008983" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590123024008983</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rineng.2024.102643" target="_blank" >10.1016/j.rineng.2024.102643</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Priority-based scheduling in residential energy management systems integrated with renewable sources using adaptive Salp swarm algorithm
Popis výsledku v původním jazyce
With the remarkable growth and implementation of communication technology, sensors, and measurement equipment in the Smart Grid (SG) environment, demand side management (DSM) and demand response (DRs) can be easily implementable in residential energy systems integrated with renewable energy sources (RES). Looking at this perspective, this paper suggests an intelligent and dynamic load-priority-based scheduling optimal smart residential energy management system (REMS). The objectives to achieve through priority-based scheduling in the case of a residential energy management system are multi-focussed in terms of peak load reduction, consumer choice of consumption according to priority basis, and cost-effectiveness towards electricity price savings. The issues related to uncertainties with RES due to environmental dependency must be incorporated into the DSM. A single objective discrete formulation based on the Adaptive Salp Swarm Algorithm (ASSA) has been done on modelling and optimizing the crucial system parameters for scheduling, ideally the operation of residential appliances, along with the sources and prioritized-based loads available. System constraints, consumer priorities, energy source availability, uncertainties, and objectives are considered in the formulation to justify the approach that is feasible in real-time conditions. To enhance the search capabilities of SSA, the control parameters vary optimally in both the exploration and exploitation stages of searching. Comparative results with genetic algorithms (GA), particle swarm optimization (PSO), and conventional SSA are presented in different cases, such as (1) traditional homes without REMS, (ii) smart homes with REMS (iii) smart homes using REMS with RES. (C) 2024 The Author(s)
Název v anglickém jazyce
Priority-based scheduling in residential energy management systems integrated with renewable sources using adaptive Salp swarm algorithm
Popis výsledku anglicky
With the remarkable growth and implementation of communication technology, sensors, and measurement equipment in the Smart Grid (SG) environment, demand side management (DSM) and demand response (DRs) can be easily implementable in residential energy systems integrated with renewable energy sources (RES). Looking at this perspective, this paper suggests an intelligent and dynamic load-priority-based scheduling optimal smart residential energy management system (REMS). The objectives to achieve through priority-based scheduling in the case of a residential energy management system are multi-focussed in terms of peak load reduction, consumer choice of consumption according to priority basis, and cost-effectiveness towards electricity price savings. The issues related to uncertainties with RES due to environmental dependency must be incorporated into the DSM. A single objective discrete formulation based on the Adaptive Salp Swarm Algorithm (ASSA) has been done on modelling and optimizing the crucial system parameters for scheduling, ideally the operation of residential appliances, along with the sources and prioritized-based loads available. System constraints, consumer priorities, energy source availability, uncertainties, and objectives are considered in the formulation to justify the approach that is feasible in real-time conditions. To enhance the search capabilities of SSA, the control parameters vary optimally in both the exploration and exploitation stages of searching. Comparative results with genetic algorithms (GA), particle swarm optimization (PSO), and conventional SSA are presented in different cases, such as (1) traditional homes without REMS, (ii) smart homes with REMS (iii) smart homes using REMS with RES. (C) 2024 The Author(s)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Engineering
ISSN
2590-1230
e-ISSN
2590-1230
Svazek periodika
23
Číslo periodika v rámci svazku
September 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
nestránkováno
Kód UT WoS článku
001287742400001
EID výsledku v databázi Scopus
2-s2.0-85200128019