Smart Home's Energy Management Through a Clustering-Based Reinforcement Learning Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00363750" target="_blank" >RIV/68407700:21230/22:00363750 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/JIOT.2022.3152586" target="_blank" >https://doi.org/10.1109/JIOT.2022.3152586</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JIOT.2022.3152586" target="_blank" >10.1109/JIOT.2022.3152586</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Smart Home's Energy Management Through a Clustering-Based Reinforcement Learning Approach
Popis výsledku v původním jazyce
Smart homes that contain renewable energy sources, storage systems, and controllable loads will be key components of the future smart grid. In this article, we develop a reinforcement-learning (RL)-based scheme for the real-time energy management of a smart home that contains a photovoltaic system, a storage device, and a heating, ventilation, and air conditioning (HVAC) system. The objective of the proposed scheme is to minimize the smart home's electricity cost and the residents' thermal discomfort by appropriately scheduling the storage device and the HVAC system on a daily basis. The problem is formulated as a Markov decision process, which is solved using the deep deterministic policy gradient (DDPG) algorithm. The main contribution of our study compared to the existing literature on RL-based energy management is the development of a clustering process that partitions the training data set into more homogeneous training subsets. Different DDPG agents are trained based on the data included in the derived subsets, while in real time, the test days are assigned to the appropriate agent, which is able to achieve more efficient energy schedules when compared to a single DDPG agent that is trained based on a unified training data set.
Název v anglickém jazyce
Smart Home's Energy Management Through a Clustering-Based Reinforcement Learning Approach
Popis výsledku anglicky
Smart homes that contain renewable energy sources, storage systems, and controllable loads will be key components of the future smart grid. In this article, we develop a reinforcement-learning (RL)-based scheme for the real-time energy management of a smart home that contains a photovoltaic system, a storage device, and a heating, ventilation, and air conditioning (HVAC) system. The objective of the proposed scheme is to minimize the smart home's electricity cost and the residents' thermal discomfort by appropriately scheduling the storage device and the HVAC system on a daily basis. The problem is formulated as a Markov decision process, which is solved using the deep deterministic policy gradient (DDPG) algorithm. The main contribution of our study compared to the existing literature on RL-based energy management is the development of a clustering process that partitions the training data set into more homogeneous training subsets. Different DDPG agents are trained based on the data included in the derived subsets, while in real time, the test days are assigned to the appropriate agent, which is able to achieve more efficient energy schedules when compared to a single DDPG agent that is trained based on a unified training data set.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Internet of Things Journal
ISSN
2327-4662
e-ISSN
2327-4662
Svazek periodika
9
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
16363-16371
Kód UT WoS článku
000846738200074
EID výsledku v databázi Scopus
2-s2.0-85125357587