Real-Time Energy Scheduling Applying the Twin Delayed Deep Deterministic Policy Gradient and Data Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00372050" target="_blank" >RIV/68407700:21230/24:00372050 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/JSYST.2023.3326978" target="_blank" >https://doi.org/10.1109/JSYST.2023.3326978</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSYST.2023.3326978" target="_blank" >10.1109/JSYST.2023.3326978</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Real-Time Energy Scheduling Applying the Twin Delayed Deep Deterministic Policy Gradient and Data Clustering
Popis výsledku v původním jazyce
Smart homes are structural parts of the smart grid, since they contain controllable devices and energy management systems. In this work, we propose a reinforcement learning (RL)-based method for the energy scheduling of a smart home's energy storage system, heating ventilation and air conditioning system, and electric vehicle (EV). The proposed method targets to jointly minimize three evaluation metrics; the smart home's electricity cost, the residents' thermal discomfort, and the EV user's range anxiety. An advanced reinforcement learning algorithm, the twin delayed deep deterministic policy gradient (TD3), is utilized for this purpose together with a process, which is based on data clustering, that augments the similarity degree between the train and the test sets. As a result, the considered evaluation metrics show a significant improvement. The smart homes electricity cost, for instance, can be reduced by up to 11.2%, when compared with other RL-based works in the existing literature.
Název v anglickém jazyce
Real-Time Energy Scheduling Applying the Twin Delayed Deep Deterministic Policy Gradient and Data Clustering
Popis výsledku anglicky
Smart homes are structural parts of the smart grid, since they contain controllable devices and energy management systems. In this work, we propose a reinforcement learning (RL)-based method for the energy scheduling of a smart home's energy storage system, heating ventilation and air conditioning system, and electric vehicle (EV). The proposed method targets to jointly minimize three evaluation metrics; the smart home's electricity cost, the residents' thermal discomfort, and the EV user's range anxiety. An advanced reinforcement learning algorithm, the twin delayed deep deterministic policy gradient (TD3), is utilized for this purpose together with a process, which is based on data clustering, that augments the similarity degree between the train and the test sets. As a result, the considered evaluation metrics show a significant improvement. The smart homes electricity cost, for instance, can be reduced by up to 11.2%, when compared with other RL-based works in the existing literature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Systems Journal
ISSN
1932-8184
e-ISSN
1937-9234
Svazek periodika
18
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
51-60
Kód UT WoS článku
001106704900001
EID výsledku v databázi Scopus
2-s2.0-85177065571