MEMS: An automated multi-energy management system for smart residences using the DD-LSTM approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020665" target="_blank" >RIV/62690094:18470/23:50020665 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210670723004614?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210670723004614?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scs.2023.104850" target="_blank" >10.1016/j.scs.2023.104850</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MEMS: An automated multi-energy management system for smart residences using the DD-LSTM approach
Popis výsledku v původním jazyce
The increasing popularity of home automation and the rising global electricity costs have emphasized the importance of energy conservation for consumers. With smart meters, machine learning models can anticipate equipment behavior by monitoring and recording residential power use. Multi-Energy Management Systems, which allow smart grid flexibility, have garnered interest. Smart meters and smart energy gadgets in homes require autonomous multi-energy management systems. These systems should efficiently utilize real-time data to plan device consumption, reducing costs for end users. The model incorporates two Long Short-Term Memory networks, capturing short-term and long-term dependencies in energy consumption patterns. This enables the Multi-Energy Management Systems to make accurate predictions and manage energy resources in real-time. The primary objectives are to minimize reliance on the grid and maximize the utilization of renewable energy sources. The proposed Deep Dual- Long Short-Term Memory model achieves impressive accuracy rates, with scores ranging from 97% to 99% for recall, F1-score, and precision. Numerical findings demonstrate the superior performance of the proposed method compared to existing approaches, showcasing its ability to lower energy consumption and meet operational constraints. The results indicate that the proposed strategy optimizes energy use, providing cost savings and satisfying user requirements.
Název v anglickém jazyce
MEMS: An automated multi-energy management system for smart residences using the DD-LSTM approach
Popis výsledku anglicky
The increasing popularity of home automation and the rising global electricity costs have emphasized the importance of energy conservation for consumers. With smart meters, machine learning models can anticipate equipment behavior by monitoring and recording residential power use. Multi-Energy Management Systems, which allow smart grid flexibility, have garnered interest. Smart meters and smart energy gadgets in homes require autonomous multi-energy management systems. These systems should efficiently utilize real-time data to plan device consumption, reducing costs for end users. The model incorporates two Long Short-Term Memory networks, capturing short-term and long-term dependencies in energy consumption patterns. This enables the Multi-Energy Management Systems to make accurate predictions and manage energy resources in real-time. The primary objectives are to minimize reliance on the grid and maximize the utilization of renewable energy sources. The proposed Deep Dual- Long Short-Term Memory model achieves impressive accuracy rates, with scores ranging from 97% to 99% for recall, F1-score, and precision. Numerical findings demonstrate the superior performance of the proposed method compared to existing approaches, showcasing its ability to lower energy consumption and meet operational constraints. The results indicate that the proposed strategy optimizes energy use, providing cost savings and satisfying user requirements.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Cities and Society
ISSN
2210-6707
e-ISSN
2210-6715
Svazek periodika
98
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
"Article Number :104850"
Kód UT WoS článku
001061518500001
EID výsledku v databázi Scopus
2-s2.0-85169919585