Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

MEMS: An automated multi-energy management system for smart residences using the DD-LSTM approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020665" target="_blank" >RIV/62690094:18470/23:50020665 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2210670723004614?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210670723004614?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scs.2023.104850" target="_blank" >10.1016/j.scs.2023.104850</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    MEMS: An automated multi-energy management system for smart residences using the DD-LSTM approach

  • Popis výsledku v původním jazyce

    The increasing popularity of home automation and the rising global electricity costs have emphasized the importance of energy conservation for consumers. With smart meters, machine learning models can anticipate equipment behavior by monitoring and recording residential power use. Multi-Energy Management Systems, which allow smart grid flexibility, have garnered interest. Smart meters and smart energy gadgets in homes require autonomous multi-energy management systems. These systems should efficiently utilize real-time data to plan device consumption, reducing costs for end users. The model incorporates two Long Short-Term Memory networks, capturing short-term and long-term dependencies in energy consumption patterns. This enables the Multi-Energy Management Systems to make accurate predictions and manage energy resources in real-time. The primary objectives are to minimize reliance on the grid and maximize the utilization of renewable energy sources. The proposed Deep Dual- Long Short-Term Memory model achieves impressive accuracy rates, with scores ranging from 97% to 99% for recall, F1-score, and precision. Numerical findings demonstrate the superior performance of the proposed method compared to existing approaches, showcasing its ability to lower energy consumption and meet operational constraints. The results indicate that the proposed strategy optimizes energy use, providing cost savings and satisfying user requirements.

  • Název v anglickém jazyce

    MEMS: An automated multi-energy management system for smart residences using the DD-LSTM approach

  • Popis výsledku anglicky

    The increasing popularity of home automation and the rising global electricity costs have emphasized the importance of energy conservation for consumers. With smart meters, machine learning models can anticipate equipment behavior by monitoring and recording residential power use. Multi-Energy Management Systems, which allow smart grid flexibility, have garnered interest. Smart meters and smart energy gadgets in homes require autonomous multi-energy management systems. These systems should efficiently utilize real-time data to plan device consumption, reducing costs for end users. The model incorporates two Long Short-Term Memory networks, capturing short-term and long-term dependencies in energy consumption patterns. This enables the Multi-Energy Management Systems to make accurate predictions and manage energy resources in real-time. The primary objectives are to minimize reliance on the grid and maximize the utilization of renewable energy sources. The proposed Deep Dual- Long Short-Term Memory model achieves impressive accuracy rates, with scores ranging from 97% to 99% for recall, F1-score, and precision. Numerical findings demonstrate the superior performance of the proposed method compared to existing approaches, showcasing its ability to lower energy consumption and meet operational constraints. The results indicate that the proposed strategy optimizes energy use, providing cost savings and satisfying user requirements.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20701 - Environmental and geological engineering, geotechnics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sustainable Cities and Society

  • ISSN

    2210-6707

  • e-ISSN

    2210-6715

  • Svazek periodika

    98

  • Číslo periodika v rámci svazku

    November

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    "Article Number :104850"

  • Kód UT WoS článku

    001061518500001

  • EID výsledku v databázi Scopus

    2-s2.0-85169919585