Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimal Structure to Maximize Torque per Volume for the Consequent-Pole PMSM and Investigating the Temperature Effect

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255428" target="_blank" >RIV/61989100:27240/24:10255428 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/24:10255428

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10568940" target="_blank" >https://ieeexplore.ieee.org/document/10568940</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3418031" target="_blank" >10.1109/ACCESS.2024.3418031</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimal Structure to Maximize Torque per Volume for the Consequent-Pole PMSM and Investigating the Temperature Effect

  • Popis výsledku v původním jazyce

    Heat removal, maximizing torque, minimizing losses, volume, cost, and temperature effect play essential roles in electrical vehicle applications. An inner-rotor consequent-pole permanent magnet synchronous machine (CPPMSM) merits suitable losses, cost, and heat rejection. Hence, first, a two-dimensional model of CPPMSM is explained based on solving Maxwell&apos;s equations in all regions of the machine. Then, all the components of torque, back-EMF, inductance, and unbalanced magnetic forces in the direction of the X-axis and Y-axis and their magnitudes are calculated. Afterward, the overload capability and the torque-speed characteristic are determined based on the average torque. Therefore, to maximize the torque/volume ratio, four metaheuristic optimization algorithms, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and Teaching Learn Base Optimization (TLBO), have been implemented, and the mentioned index is optimized. Since the said algorithms usually can minimize, its inverse is minimized instead of the index mentioned above being maximized. At this stage, the effect of three types of magnetization patterns, i.e., radial, parallel, and bar magnet in shifting, is also considered. The flux density of the permanent magnet changes concerning temperature. Finally, the effect of these changes on cogging, reluctance, and instantaneous torque, as well as back-EMF, UMF, torque-speed characteristic, and overload capability diagram, will be analyzed. The simulation was performed using MATLAB software. Authors

  • Název v anglickém jazyce

    Optimal Structure to Maximize Torque per Volume for the Consequent-Pole PMSM and Investigating the Temperature Effect

  • Popis výsledku anglicky

    Heat removal, maximizing torque, minimizing losses, volume, cost, and temperature effect play essential roles in electrical vehicle applications. An inner-rotor consequent-pole permanent magnet synchronous machine (CPPMSM) merits suitable losses, cost, and heat rejection. Hence, first, a two-dimensional model of CPPMSM is explained based on solving Maxwell&apos;s equations in all regions of the machine. Then, all the components of torque, back-EMF, inductance, and unbalanced magnetic forces in the direction of the X-axis and Y-axis and their magnitudes are calculated. Afterward, the overload capability and the torque-speed characteristic are determined based on the average torque. Therefore, to maximize the torque/volume ratio, four metaheuristic optimization algorithms, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and Teaching Learn Base Optimization (TLBO), have been implemented, and the mentioned index is optimized. Since the said algorithms usually can minimize, its inverse is minimized instead of the index mentioned above being maximized. At this stage, the effect of three types of magnetization patterns, i.e., radial, parallel, and bar magnet in shifting, is also considered. The flux density of the permanent magnet changes concerning temperature. Finally, the effect of these changes on cogging, reluctance, and instantaneous torque, as well as back-EMF, UMF, torque-speed characteristic, and overload capability diagram, will be analyzed. The simulation was performed using MATLAB software. Authors

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    15 July 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    1

  • Strana od-do

    1

  • Kód UT WoS článku

    001297216600001

  • EID výsledku v databázi Scopus

    2-s2.0-85197044523