Optimal Structure to Maximize Torque per Volume for the Consequent-Pole PMSM and Investigating the Temperature Effect
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255428" target="_blank" >RIV/61989100:27240/24:10255428 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10255428
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10568940" target="_blank" >https://ieeexplore.ieee.org/document/10568940</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3418031" target="_blank" >10.1109/ACCESS.2024.3418031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Structure to Maximize Torque per Volume for the Consequent-Pole PMSM and Investigating the Temperature Effect
Popis výsledku v původním jazyce
Heat removal, maximizing torque, minimizing losses, volume, cost, and temperature effect play essential roles in electrical vehicle applications. An inner-rotor consequent-pole permanent magnet synchronous machine (CPPMSM) merits suitable losses, cost, and heat rejection. Hence, first, a two-dimensional model of CPPMSM is explained based on solving Maxwell's equations in all regions of the machine. Then, all the components of torque, back-EMF, inductance, and unbalanced magnetic forces in the direction of the X-axis and Y-axis and their magnitudes are calculated. Afterward, the overload capability and the torque-speed characteristic are determined based on the average torque. Therefore, to maximize the torque/volume ratio, four metaheuristic optimization algorithms, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and Teaching Learn Base Optimization (TLBO), have been implemented, and the mentioned index is optimized. Since the said algorithms usually can minimize, its inverse is minimized instead of the index mentioned above being maximized. At this stage, the effect of three types of magnetization patterns, i.e., radial, parallel, and bar magnet in shifting, is also considered. The flux density of the permanent magnet changes concerning temperature. Finally, the effect of these changes on cogging, reluctance, and instantaneous torque, as well as back-EMF, UMF, torque-speed characteristic, and overload capability diagram, will be analyzed. The simulation was performed using MATLAB software. Authors
Název v anglickém jazyce
Optimal Structure to Maximize Torque per Volume for the Consequent-Pole PMSM and Investigating the Temperature Effect
Popis výsledku anglicky
Heat removal, maximizing torque, minimizing losses, volume, cost, and temperature effect play essential roles in electrical vehicle applications. An inner-rotor consequent-pole permanent magnet synchronous machine (CPPMSM) merits suitable losses, cost, and heat rejection. Hence, first, a two-dimensional model of CPPMSM is explained based on solving Maxwell's equations in all regions of the machine. Then, all the components of torque, back-EMF, inductance, and unbalanced magnetic forces in the direction of the X-axis and Y-axis and their magnitudes are calculated. Afterward, the overload capability and the torque-speed characteristic are determined based on the average torque. Therefore, to maximize the torque/volume ratio, four metaheuristic optimization algorithms, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), and Teaching Learn Base Optimization (TLBO), have been implemented, and the mentioned index is optimized. Since the said algorithms usually can minimize, its inverse is minimized instead of the index mentioned above being maximized. At this stage, the effect of three types of magnetization patterns, i.e., radial, parallel, and bar magnet in shifting, is also considered. The flux density of the permanent magnet changes concerning temperature. Finally, the effect of these changes on cogging, reluctance, and instantaneous torque, as well as back-EMF, UMF, torque-speed characteristic, and overload capability diagram, will be analyzed. The simulation was performed using MATLAB software. Authors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
15 July 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
1
Strana od-do
1
Kód UT WoS článku
001297216600001
EID výsledku v databázi Scopus
2-s2.0-85197044523