Chaotic self-adaptive sine cosine multi-objective optimization algorithm to solve microgrid optimal energy scheduling problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255430" target="_blank" >RIV/61989100:27240/24:10255430 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10255430
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-024-69734-4" target="_blank" >https://www.nature.com/articles/s41598-024-69734-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-69734-4" target="_blank" >10.1038/s41598-024-69734-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chaotic self-adaptive sine cosine multi-objective optimization algorithm to solve microgrid optimal energy scheduling problems
Popis výsledku v původním jazyce
Researchers are increasingly focusing on renewable energy due to its high reliability, energy independence, efficiency, and environmental benefits. This paper introduces a novel multi-objective framework for the short-term scheduling of microgrids (MGs), which addresses the conflicting objectives of minimizing operating expenses and reducing pollution emissions. The core contribution is the development of the Chaotic Self-Adaptive Sine Cosine Algorithm (CSASCA). This algorithm generates Pareto optimal solutions simultaneously, effectively balancing cost reduction and emission mitigation. The problem is formulated as a complex multi-objective optimization task with goals of cost reduction and environmental protection. To enhance decision-making within the algorithm, fuzzy logic is incorporated. The performance of CSASCA is evaluated across three scenarios: (1) PV and wind units operating at full power, (2) all units operating within specified limits with unrestricted utility power exchange, and (3) microgrid operation using only non-zero-emission energy sources. This third scenario highlights the algorithm's efficacy in a challenging context not covered in prior research. Simulation results from these scenarios are compared with traditional Sine Cosine Algorithm (SCA) and other recent optimization methods using three test examples. The innovation of CSASCA lies in its chaotic self-adaptive mechanisms, which significantly enhance optimization performance. The integration of these mechanisms results in superior solutions for operation cost, emissions, and execution time. Specifically, CSASCA achieves optimal values of 590.45 EURct for cost and 337.28 kg for emissions in the first scenario, 98.203 EURct for cost and 406.204 kg for emissions in the second scenario, and 95.38 EURct for cost and 982.173 kg for emissions in the third scenario. Overall, CSASCA outperforms traditional SCA by offering enhanced exploration, improved convergence, effective constraint handling, and reduced parameter sensitivity, making it a powerful tool for solving multi-objective optimization problems like microgrid scheduling. (C) The Author(s) 2024.
Název v anglickém jazyce
Chaotic self-adaptive sine cosine multi-objective optimization algorithm to solve microgrid optimal energy scheduling problems
Popis výsledku anglicky
Researchers are increasingly focusing on renewable energy due to its high reliability, energy independence, efficiency, and environmental benefits. This paper introduces a novel multi-objective framework for the short-term scheduling of microgrids (MGs), which addresses the conflicting objectives of minimizing operating expenses and reducing pollution emissions. The core contribution is the development of the Chaotic Self-Adaptive Sine Cosine Algorithm (CSASCA). This algorithm generates Pareto optimal solutions simultaneously, effectively balancing cost reduction and emission mitigation. The problem is formulated as a complex multi-objective optimization task with goals of cost reduction and environmental protection. To enhance decision-making within the algorithm, fuzzy logic is incorporated. The performance of CSASCA is evaluated across three scenarios: (1) PV and wind units operating at full power, (2) all units operating within specified limits with unrestricted utility power exchange, and (3) microgrid operation using only non-zero-emission energy sources. This third scenario highlights the algorithm's efficacy in a challenging context not covered in prior research. Simulation results from these scenarios are compared with traditional Sine Cosine Algorithm (SCA) and other recent optimization methods using three test examples. The innovation of CSASCA lies in its chaotic self-adaptive mechanisms, which significantly enhance optimization performance. The integration of these mechanisms results in superior solutions for operation cost, emissions, and execution time. Specifically, CSASCA achieves optimal values of 590.45 EURct for cost and 337.28 kg for emissions in the first scenario, 98.203 EURct for cost and 406.204 kg for emissions in the second scenario, and 95.38 EURct for cost and 982.173 kg for emissions in the third scenario. Overall, CSASCA outperforms traditional SCA by offering enhanced exploration, improved convergence, effective constraint handling, and reduced parameter sensitivity, making it a powerful tool for solving multi-objective optimization problems like microgrid scheduling. (C) The Author(s) 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
nestránkováno
Kód UT WoS článku
001294085700011
EID výsledku v databázi Scopus
2-s2.0-85201392659