Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-objective energy management in a renewable and EV-integrated microgrid using an iterative map-based self-adaptive crystal structure algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255375" target="_blank" >RIV/61989100:27240/24:10255375 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/24:10255375

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-024-66644-3" target="_blank" >https://www.nature.com/articles/s41598-024-66644-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-66644-3" target="_blank" >10.1038/s41598-024-66644-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-objective energy management in a renewable and EV-integrated microgrid using an iterative map-based self-adaptive crystal structure algorithm

  • Popis výsledku v původním jazyce

    The use of plug-in hybrid electric vehicles (PHEVs) provides a way to address energy and environmental issues. Integrating a large number of PHEVs with advanced control and storage capabilities can enhance the flexibility of the distribution grid. This study proposes an innovative energy management strategy (EMS) using an Iterative map-based self-adaptive crystal structure algorithm (SaCryStAl) specifically designed for microgrids with renewable energy sources (RESs) and PHEVs. The goal is to optimize multi-objective scheduling for a microgrid with wind turbines, micro-turbines, fuel cells, solar photovoltaic systems, and batteries to balance power and store excess energy. The aim is to minimize microgrid operating costs while considering environmental impacts. The optimization problem is framed as a multi-objective problem with nonlinear constraints, using fuzzy logic to aid decision-making. In the first scenario, the microgrid is optimized with all RESs installed within predetermined boundaries, in addition to grid connection. In the second scenario, the microgrid operates with a wind turbine at rated power. The third case study involves integrating plug-in hybrid electric vehicles (PHEVs) into the microgrid in three charging modes: coordinated, smart, and uncoordinated, utilizing standard and rated RES power. The SaCryStAl algorithm showed superior performance in operation cost, emissions, and execution time compared to traditional CryStAl and other recent optimization methods. The proposed SaCryStAl algorithm achieved optimal solutions in the first scenario for cost and emissions at 177.29 &lt;euro&gt;ct and 469.92 kg, respectively, within a reasonable time frame. In the second scenario, it yielded optimal cost and emissions values of 112.02 &lt;euro&gt;ct and 196.15 kg, respectively. Lastly, in the third scenario, the SaCryStAl algorithm achieves optimal cost values of 319.9301 &lt;euro&gt;ct, 160.9827 &lt;euro&gt;ct and 128.2815 &lt;euro&gt;ct for uncoordinated charging, coordinated charging and smart charging modes respectively. Optimization results reveal that the proposed SaCryStAl outperformed other evolutionary optimization algorithms, such as differential evolution, CryStAl, Grey Wolf Optimizer, particle swarm optimization, and genetic algorithm, as confirmed through test cases.

  • Název v anglickém jazyce

    Multi-objective energy management in a renewable and EV-integrated microgrid using an iterative map-based self-adaptive crystal structure algorithm

  • Popis výsledku anglicky

    The use of plug-in hybrid electric vehicles (PHEVs) provides a way to address energy and environmental issues. Integrating a large number of PHEVs with advanced control and storage capabilities can enhance the flexibility of the distribution grid. This study proposes an innovative energy management strategy (EMS) using an Iterative map-based self-adaptive crystal structure algorithm (SaCryStAl) specifically designed for microgrids with renewable energy sources (RESs) and PHEVs. The goal is to optimize multi-objective scheduling for a microgrid with wind turbines, micro-turbines, fuel cells, solar photovoltaic systems, and batteries to balance power and store excess energy. The aim is to minimize microgrid operating costs while considering environmental impacts. The optimization problem is framed as a multi-objective problem with nonlinear constraints, using fuzzy logic to aid decision-making. In the first scenario, the microgrid is optimized with all RESs installed within predetermined boundaries, in addition to grid connection. In the second scenario, the microgrid operates with a wind turbine at rated power. The third case study involves integrating plug-in hybrid electric vehicles (PHEVs) into the microgrid in three charging modes: coordinated, smart, and uncoordinated, utilizing standard and rated RES power. The SaCryStAl algorithm showed superior performance in operation cost, emissions, and execution time compared to traditional CryStAl and other recent optimization methods. The proposed SaCryStAl algorithm achieved optimal solutions in the first scenario for cost and emissions at 177.29 &lt;euro&gt;ct and 469.92 kg, respectively, within a reasonable time frame. In the second scenario, it yielded optimal cost and emissions values of 112.02 &lt;euro&gt;ct and 196.15 kg, respectively. Lastly, in the third scenario, the SaCryStAl algorithm achieves optimal cost values of 319.9301 &lt;euro&gt;ct, 160.9827 &lt;euro&gt;ct and 128.2815 &lt;euro&gt;ct for uncoordinated charging, coordinated charging and smart charging modes respectively. Optimization results reveal that the proposed SaCryStAl outperformed other evolutionary optimization algorithms, such as differential evolution, CryStAl, Grey Wolf Optimizer, particle swarm optimization, and genetic algorithm, as confirmed through test cases.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    001271178000100

  • EID výsledku v databázi Scopus

    2-s2.0-85197705895