A new methodology for reducing carbon emissions using multi-renewable energy systems and artificial intelligence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021678" target="_blank" >RIV/62690094:18450/24:50021678 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2210670724005468?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210670724005468?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scs.2024.105721" target="_blank" >10.1016/j.scs.2024.105721</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A new methodology for reducing carbon emissions using multi-renewable energy systems and artificial intelligence
Popis výsledku v původním jazyce
Microgrid cost management is a significant difficulty because the energy generated by microgrids is typically derived from a variety of renewable and non-renewable sources. Furthermore, in order to meet the requirements of freed energy markets and secure load demand, a link between the microgrid and the national grid is always preferred. For all of these reasons, in order to minimize operating expenses, it is imperative to design a smart energy management unit to regulate various energy resources inside the microgrid. In this study, a smart unit idea for multi-source microgrid operation and cost management is presented. The proposed unit utilizes the Improved Artificial Rabbits Optimization Algorithm (IAROA) which is used to optimize the cost of operation based on current load demand, energy prices and generation capacities. Also, a comparison between the optimization outcomes obtained results is implemented using Honey Badger Algorithm (HBA), and Whale Optimization Algorithm (WOA). The results prove the applicability and feasibility of the proposed method for the demand management system in SMG. The price after applying HBA is 6244.5783 (ID). But after applying the Whale Optimization Algorithm, the cost is found 4283.9755 (ID), and after applying the Artificial Rabbits Optimization Algorithm, the cost is found 1227.4482 (ID). By comparing the proposed method with conventional method, the whale optimization algorithm saved 31.396 % per day, and the proposed artificial rabbit's optimization algorithm saved 80.3437 % per day. From the obtained results the proposed algorithm gives superior performance.
Název v anglickém jazyce
A new methodology for reducing carbon emissions using multi-renewable energy systems and artificial intelligence
Popis výsledku anglicky
Microgrid cost management is a significant difficulty because the energy generated by microgrids is typically derived from a variety of renewable and non-renewable sources. Furthermore, in order to meet the requirements of freed energy markets and secure load demand, a link between the microgrid and the national grid is always preferred. For all of these reasons, in order to minimize operating expenses, it is imperative to design a smart energy management unit to regulate various energy resources inside the microgrid. In this study, a smart unit idea for multi-source microgrid operation and cost management is presented. The proposed unit utilizes the Improved Artificial Rabbits Optimization Algorithm (IAROA) which is used to optimize the cost of operation based on current load demand, energy prices and generation capacities. Also, a comparison between the optimization outcomes obtained results is implemented using Honey Badger Algorithm (HBA), and Whale Optimization Algorithm (WOA). The results prove the applicability and feasibility of the proposed method for the demand management system in SMG. The price after applying HBA is 6244.5783 (ID). But after applying the Whale Optimization Algorithm, the cost is found 4283.9755 (ID), and after applying the Artificial Rabbits Optimization Algorithm, the cost is found 1227.4482 (ID). By comparing the proposed method with conventional method, the whale optimization algorithm saved 31.396 % per day, and the proposed artificial rabbit's optimization algorithm saved 80.3437 % per day. From the obtained results the proposed algorithm gives superior performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Cities and Society
ISSN
2210-6707
e-ISSN
2210-6715
Svazek periodika
114
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
"Article Number: 105721"
Kód UT WoS článku
001295634600001
EID výsledku v databázi Scopus
2-s2.0-85201114451