Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250020" target="_blank" >RIV/61989100:27240/22:10250020 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2071-1050/14/11/6759" target="_blank" >https://www.mdpi.com/2071-1050/14/11/6759</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su14116759" target="_blank" >10.3390/su14116759</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony
Popis výsledku v původním jazyce
An important issue in power systems is the optimal operation of microgrids with demand-side management. The implementation of demand-side management programs, on the one hand, reduces the cost of operating the power system, and on the other hand, the implementation of such programs requires financial incentive policies. In this paper, the problem of the optimal operation of microgrids along with demand-side management (DSM) is formulated as an optimization problem. Load shifting is considered an effective solution in demand-side management. The objective function of this problem is to minimize the total operating costs of the power system and the cost of load shifting, and the constraints of the problem include operating constraints and executive restrictions for load shifting. Due to the dimensions of the problem, the simultaneous combination of a genetic algorithm and an ABC is used in such a way that by solving the OPF problem with an ABC algorithm and applying it to the structure of the genetic algorithm, the main problem will be solved. Finally, the proposed method is evaluated under the influence of various factors, including the types of production units, the types of loads, the unit uncertainty, sharing with the grid, and electricity prices all based on different scenarios. To confirm the proposed method, the results were compared with different algorithms on the IEEE 33-bus network, which was able to reduce costs by 57.01%.
Název v anglickém jazyce
Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony
Popis výsledku anglicky
An important issue in power systems is the optimal operation of microgrids with demand-side management. The implementation of demand-side management programs, on the one hand, reduces the cost of operating the power system, and on the other hand, the implementation of such programs requires financial incentive policies. In this paper, the problem of the optimal operation of microgrids along with demand-side management (DSM) is formulated as an optimization problem. Load shifting is considered an effective solution in demand-side management. The objective function of this problem is to minimize the total operating costs of the power system and the cost of load shifting, and the constraints of the problem include operating constraints and executive restrictions for load shifting. Due to the dimensions of the problem, the simultaneous combination of a genetic algorithm and an ABC is used in such a way that by solving the OPF problem with an ABC algorithm and applying it to the structure of the genetic algorithm, the main problem will be solved. Finally, the proposed method is evaluated under the influence of various factors, including the types of production units, the types of loads, the unit uncertainty, sharing with the grid, and electricity prices all based on different scenarios. To confirm the proposed method, the results were compared with different algorithms on the IEEE 33-bus network, which was able to reduce costs by 57.01%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainability
ISSN
2071-1050
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
26
Strana od-do
nestrankovano
Kód UT WoS článku
000808841500001
EID výsledku v databázi Scopus
2-s2.0-85132254644