A systematic review of deep learning techniques for plant diseases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255616" target="_blank" >RIV/61989100:27240/24:10255616 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43210/24:43925740
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10462-024-10944-7" target="_blank" >https://link.springer.com/article/10.1007/s10462-024-10944-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10462-024-10944-7" target="_blank" >10.1007/s10462-024-10944-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A systematic review of deep learning techniques for plant diseases
Popis výsledku v původním jazyce
Agriculture is one of the most crucial sectors, meeting the fundamental food needs of humanity. Plant diseases increase food economic and food security concerns for countries and disrupt their agricultural planning. Traditional methods for detecting plant diseases require a lot of labor and time. Consequently, many researchers and institutions strive to address these issues using advanced technological methods. Deep learning-based plant disease detection offers considerable progress and hope compared to classical methods. When trained with large and high-quality datasets, these technologies robustly detect diseases on plant leaves in early stages. This study systematically reviews the application of deep learning techniques in plant disease detection by analyzing 160 research articles from 2020 to 2024. The studies are examined in three different areas: classification, detection, and segmentation of diseases on plant leaves, while also thoroughly reviewing publicly available datasets. This systematic review offers a comprehensive assessment of the current literature, detailing the most popular deep learning architectures, the most frequently studied plant diseases, datasets, encountered challenges, and various perspectives. It provides new insights for researchers working in the agricultural sector. Moreover, it addresses the major challenges in the field of disease detection in agriculture. Thus, this study offers valuable information and a suitable solution based on deep learning applications for agricultural sustainability.
Název v anglickém jazyce
A systematic review of deep learning techniques for plant diseases
Popis výsledku anglicky
Agriculture is one of the most crucial sectors, meeting the fundamental food needs of humanity. Plant diseases increase food economic and food security concerns for countries and disrupt their agricultural planning. Traditional methods for detecting plant diseases require a lot of labor and time. Consequently, many researchers and institutions strive to address these issues using advanced technological methods. Deep learning-based plant disease detection offers considerable progress and hope compared to classical methods. When trained with large and high-quality datasets, these technologies robustly detect diseases on plant leaves in early stages. This study systematically reviews the application of deep learning techniques in plant disease detection by analyzing 160 research articles from 2020 to 2024. The studies are examined in three different areas: classification, detection, and segmentation of diseases on plant leaves, while also thoroughly reviewing publicly available datasets. This systematic review offers a comprehensive assessment of the current literature, detailing the most popular deep learning architectures, the most frequently studied plant diseases, datasets, encountered challenges, and various perspectives. It provides new insights for researchers working in the agricultural sector. Moreover, it addresses the major challenges in the field of disease detection in agriculture. Thus, this study offers valuable information and a suitable solution based on deep learning applications for agricultural sustainability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Artificial Intelligence Review
ISSN
0269-2821
e-ISSN
1573-7462
Svazek periodika
57
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
39
Strana od-do
1-39
Kód UT WoS článku
001322719100007
EID výsledku v databázi Scopus
—