Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A systematic review of deep learning techniques for plant diseases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255616" target="_blank" >RIV/61989100:27240/24:10255616 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43210/24:43925740

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10462-024-10944-7" target="_blank" >https://link.springer.com/article/10.1007/s10462-024-10944-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10462-024-10944-7" target="_blank" >10.1007/s10462-024-10944-7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A systematic review of deep learning techniques for plant diseases

  • Popis výsledku v původním jazyce

    Agriculture is one of the most crucial sectors, meeting the fundamental food needs of humanity. Plant diseases increase food economic and food security concerns for countries and disrupt their agricultural planning. Traditional methods for detecting plant diseases require a lot of labor and time. Consequently, many researchers and institutions strive to address these issues using advanced technological methods. Deep learning-based plant disease detection offers considerable progress and hope compared to classical methods. When trained with large and high-quality datasets, these technologies robustly detect diseases on plant leaves in early stages. This study systematically reviews the application of deep learning techniques in plant disease detection by analyzing 160 research articles from 2020 to 2024. The studies are examined in three different areas: classification, detection, and segmentation of diseases on plant leaves, while also thoroughly reviewing publicly available datasets. This systematic review offers a comprehensive assessment of the current literature, detailing the most popular deep learning architectures, the most frequently studied plant diseases, datasets, encountered challenges, and various perspectives. It provides new insights for researchers working in the agricultural sector. Moreover, it addresses the major challenges in the field of disease detection in agriculture. Thus, this study offers valuable information and a suitable solution based on deep learning applications for agricultural sustainability.

  • Název v anglickém jazyce

    A systematic review of deep learning techniques for plant diseases

  • Popis výsledku anglicky

    Agriculture is one of the most crucial sectors, meeting the fundamental food needs of humanity. Plant diseases increase food economic and food security concerns for countries and disrupt their agricultural planning. Traditional methods for detecting plant diseases require a lot of labor and time. Consequently, many researchers and institutions strive to address these issues using advanced technological methods. Deep learning-based plant disease detection offers considerable progress and hope compared to classical methods. When trained with large and high-quality datasets, these technologies robustly detect diseases on plant leaves in early stages. This study systematically reviews the application of deep learning techniques in plant disease detection by analyzing 160 research articles from 2020 to 2024. The studies are examined in three different areas: classification, detection, and segmentation of diseases on plant leaves, while also thoroughly reviewing publicly available datasets. This systematic review offers a comprehensive assessment of the current literature, detailing the most popular deep learning architectures, the most frequently studied plant diseases, datasets, encountered challenges, and various perspectives. It provides new insights for researchers working in the agricultural sector. Moreover, it addresses the major challenges in the field of disease detection in agriculture. Thus, this study offers valuable information and a suitable solution based on deep learning applications for agricultural sustainability.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Artificial Intelligence Review

  • ISSN

    0269-2821

  • e-ISSN

    1573-7462

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    39

  • Strana od-do

    1-39

  • Kód UT WoS článku

    001322719100007

  • EID výsledku v databázi Scopus