Tomato leaf diseases detection using deep learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63541878" target="_blank" >RIV/70883521:28140/21:63541878 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-90321-3_18" target="_blank" >http://dx.doi.org/10.1007/978-3-030-90321-3_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-90321-3_18" target="_blank" >10.1007/978-3-030-90321-3_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tomato leaf diseases detection using deep learning
Popis výsledku v původním jazyce
Early detection and diagnosis of plant leaf diseases is a major necessity in a growing agricultural economy, plant leaf diseases detection is considered crucial at a very early stage as it allows adopting predictive mechanisms that helps avoiding losses to the agri-based economy. Tomato is one of the most important crops that is produced in large quantities with high commercial value and contributes to food chain and security and a lucrative business for many farmers. This study uses a deep convolutional neural network (CNN) to predict tomato leaf disease by transfer learning. InceptionV3 was used as the backbone of the CNN, the highest accuracy of 99.8% for identifying tomato leaf diseases is achieved on the PlantVillage dataset. And the final model was deployed as a web application on the cloud to be available. The experimental results show that the proposed model is effective in identifying tomato leaf disease and could be generalized to identify other plant diseases. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Tomato leaf diseases detection using deep learning
Popis výsledku anglicky
Early detection and diagnosis of plant leaf diseases is a major necessity in a growing agricultural economy, plant leaf diseases detection is considered crucial at a very early stage as it allows adopting predictive mechanisms that helps avoiding losses to the agri-based economy. Tomato is one of the most important crops that is produced in large quantities with high commercial value and contributes to food chain and security and a lucrative business for many farmers. This study uses a deep convolutional neural network (CNN) to predict tomato leaf disease by transfer learning. InceptionV3 was used as the backbone of the CNN, the highest accuracy of 99.8% for identifying tomato leaf diseases is achieved on the PlantVillage dataset. And the final model was deployed as a web application on the cloud to be available. The experimental results show that the proposed model is effective in identifying tomato leaf disease and could be generalized to identify other plant diseases. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-303090320-6
ISSN
23673370
e-ISSN
—
Počet stran výsledku
10
Strana od-do
199-208
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Zlín
Datum konání akce
1. 10. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—