Classification of plant diseases using convolutional neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F21%3A63541918" target="_blank" >RIV/70883521:28140/21:63541918 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-77445-5_24" target="_blank" >http://dx.doi.org/10.1007/978-3-030-77445-5_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-77445-5_24" target="_blank" >10.1007/978-3-030-77445-5_24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Classification of plant diseases using convolutional neural networks
Popis výsledku v původním jazyce
2020 was declared as the International Year of Plant Health, plant disease is a nightmare of any farmer, as it threatens their business and food security. The wide deployment and penetration of smartphones accompanied by computer vision models development created an economical and easy opportunity for using image classification in agriculture. Convolutional Neural Networks (CNNs) is the cutting edge in image recognition by providing a prompt and definite diagnosis. In this paper, we will use some of the pre-trained models to detect selected common diseases of the cassava plant, as it is considered the major source of calories and carbs for people in developing countries. A dataset containing 21397 images is used for model training and validation. Results show that the proposed method can achieve a high accuracy level. This demonstrates the technical feasibility of CNNs in identifying plant diseases and presents a perfect option for AI solutions for smallholder farmers. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Název v anglickém jazyce
Classification of plant diseases using convolutional neural networks
Popis výsledku anglicky
2020 was declared as the International Year of Plant Health, plant disease is a nightmare of any farmer, as it threatens their business and food security. The wide deployment and penetration of smartphones accompanied by computer vision models development created an economical and easy opportunity for using image classification in agriculture. Convolutional Neural Networks (CNNs) is the cutting edge in image recognition by providing a prompt and definite diagnosis. In this paper, we will use some of the pre-trained models to detect selected common diseases of the cassava plant, as it is considered the major source of calories and carbs for people in developing countries. A dataset containing 21397 images is used for model training and validation. Results show that the proposed method can achieve a high accuracy level. This demonstrates the technical feasibility of CNNs in identifying plant diseases and presents a perfect option for AI solutions for smallholder farmers. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Networks and Systems
ISBN
978-303077444-8
ISSN
23673370
e-ISSN
—
Počet stran výsledku
8
Strana od-do
268-275
Název nakladatele
Springer Science and Business Media Deutschland GmbH
Místo vydání
Berlín
Místo konání akce
Zlín
Datum konání akce
1. 4. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—