Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structural Approach to Convolutional Neural Network Trained With Novel Scaled Matrix Image for Pseudo Real-Time Power Quality Event Monitoring

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255749" target="_blank" >RIV/61989100:27240/24:10255749 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/24:10255749

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10643039" target="_blank" >https://ieeexplore.ieee.org/document/10643039</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3447156" target="_blank" >10.1109/ACCESS.2024.3447156</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structural Approach to Convolutional Neural Network Trained With Novel Scaled Matrix Image for Pseudo Real-Time Power Quality Event Monitoring

  • Popis výsledku v původním jazyce

    The trend of integrating different distributed generation sources into the existing grid have increased the probability of power quality disturbances to a threatening level. Eventually, detection, protection and mitigation of these disturbances are even more challenging. In this regard, the article presents an intelligent power quality disturbance classification scheme using a 2D convolutional neural network designed from a systematic and structural standpoint. A total of 8 singular, 5 complex power quality events are simulated and voltage data collection is made from a test system designed in MATLAB Simulink environment. The three-phase voltage data is converted to a single signal arrangement through a newly proposed Unique Clark&apos;s Transformed Sequence. In addition to that, the scheme completely eliminates the worry of a signal processing stage by proposing a novel scaled matrix image created out of 2-cycle data collected at 6.4kHz sampling frequency that acts as input to the CNN architecture designed in the PYTHON environment. Further, the novelty extended to design a pseudo-real-time setup where the MATLAB environment continuously runs the test system, producing scaled matrix images. These images are saved to a shared directory, enabling a PYTHON loop for prompt event classification through the trained CNN model. The model performance is found to be 100% under ideal conditions. It has also tested under three different noise conditions of 40dB, 30dB and 20dB and obtained an overall accuracy of 98.86% with singular events. Further, the method is also verified for complex and unsymmetrical dataset and found to be equally effective. Additionally, the validation is likewise made with a trivial set of real-time simulated data using OPAL-RT 4510 setup. Finally, the proposed PQ detection scheme is compared with recently published work to express its superiority over other similar studies in terms of classification accuracy.INDEX TERMS Convolutional neural network, deep learning, power quality disturbance classification, scaled matrix image, unique Clark&apos;s transformed sequence.

  • Název v anglickém jazyce

    Structural Approach to Convolutional Neural Network Trained With Novel Scaled Matrix Image for Pseudo Real-Time Power Quality Event Monitoring

  • Popis výsledku anglicky

    The trend of integrating different distributed generation sources into the existing grid have increased the probability of power quality disturbances to a threatening level. Eventually, detection, protection and mitigation of these disturbances are even more challenging. In this regard, the article presents an intelligent power quality disturbance classification scheme using a 2D convolutional neural network designed from a systematic and structural standpoint. A total of 8 singular, 5 complex power quality events are simulated and voltage data collection is made from a test system designed in MATLAB Simulink environment. The three-phase voltage data is converted to a single signal arrangement through a newly proposed Unique Clark&apos;s Transformed Sequence. In addition to that, the scheme completely eliminates the worry of a signal processing stage by proposing a novel scaled matrix image created out of 2-cycle data collected at 6.4kHz sampling frequency that acts as input to the CNN architecture designed in the PYTHON environment. Further, the novelty extended to design a pseudo-real-time setup where the MATLAB environment continuously runs the test system, producing scaled matrix images. These images are saved to a shared directory, enabling a PYTHON loop for prompt event classification through the trained CNN model. The model performance is found to be 100% under ideal conditions. It has also tested under three different noise conditions of 40dB, 30dB and 20dB and obtained an overall accuracy of 98.86% with singular events. Further, the method is also verified for complex and unsymmetrical dataset and found to be equally effective. Additionally, the validation is likewise made with a trivial set of real-time simulated data using OPAL-RT 4510 setup. Finally, the proposed PQ detection scheme is compared with recently published work to express its superiority over other similar studies in terms of classification accuracy.INDEX TERMS Convolutional neural network, deep learning, power quality disturbance classification, scaled matrix image, unique Clark&apos;s transformed sequence.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    VOLUME 12, 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    24

  • Strana od-do

    130833-130856

  • Kód UT WoS článku

    001320449700001

  • EID výsledku v databázi Scopus

    2-s2.0-85202717409