A hybrid approach for power quality event identification in power systems: Elasticnet Regression decomposition and optimized probabilistic neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255751" target="_blank" >RIV/61989100:27240/24:10255751 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10255751
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844024140066?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024140066?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e37975" target="_blank" >10.1016/j.heliyon.2024.e37975</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A hybrid approach for power quality event identification in power systems: Elasticnet Regression decomposition and optimized probabilistic neural networks
Popis výsledku v původním jazyce
The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable analysis are essential to the fast-growing issues related to modern smart power distribution systems. In this regard, a hybrid algorithm is proposed for PQ events detection and classification using Elasticnet Regression-based Variational Mode Decomposition (ER-VMD) and Salp Swarm Algorithm optimized Probabilistic Neural Network (SSA-PNN). The Elasticnet Regression (ER) process is suggested to modify the conventional VMD approach instead of the Tikhonov Regularization (TR) method to enhance performance and obtain better band-limited intrinsic mode functions. This idea results in robust and effective reconstruction features and helps to obtain accurate classification using the classifier. In the classification stage, a Salp Swarm Algorithm (SSA) based PNN is used for the PQ event, considering the relevant features obtained from ER-VMD. The system parameters often influence PNN performance, and SSA is used to determine the ideal values to improve the PNN's capacity for more accurate classification. The numerical values of the accuracy percentage, percentage of sensitivity, and percentage of specificity in the case of real-time data are found as 98.58, 100, and 98.46, respectively. The acquired comparison findings demonstrate the effectiveness and robustness of the proposed technique in terms of rapid learning speed, smaller computational complexity, robust performance for antinoise conditions, and accurate identification and categorization.
Název v anglickém jazyce
A hybrid approach for power quality event identification in power systems: Elasticnet Regression decomposition and optimized probabilistic neural networks
Popis výsledku anglicky
The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable analysis are essential to the fast-growing issues related to modern smart power distribution systems. In this regard, a hybrid algorithm is proposed for PQ events detection and classification using Elasticnet Regression-based Variational Mode Decomposition (ER-VMD) and Salp Swarm Algorithm optimized Probabilistic Neural Network (SSA-PNN). The Elasticnet Regression (ER) process is suggested to modify the conventional VMD approach instead of the Tikhonov Regularization (TR) method to enhance performance and obtain better band-limited intrinsic mode functions. This idea results in robust and effective reconstruction features and helps to obtain accurate classification using the classifier. In the classification stage, a Salp Swarm Algorithm (SSA) based PNN is used for the PQ event, considering the relevant features obtained from ER-VMD. The system parameters often influence PNN performance, and SSA is used to determine the ideal values to improve the PNN's capacity for more accurate classification. The numerical values of the accuracy percentage, percentage of sensitivity, and percentage of specificity in the case of real-time data are found as 98.58, 100, and 98.46, respectively. The acquired comparison findings demonstrate the effectiveness and robustness of the proposed technique in terms of rapid learning speed, smaller computational complexity, robust performance for antinoise conditions, and accurate identification and categorization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
10
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
nestránkováno
Kód UT WoS článku
001319897100001
EID výsledku v databázi Scopus
2-s2.0-85204056348