On favorable bounds on the spectrum of discretized Steklov-Poincaré operator and applications to domain decomposition methods in 2D
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256054" target="_blank" >RIV/61989100:27240/24:10256054 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10256054
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0898122124001986" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0898122124001986</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2024.04.033" target="_blank" >10.1016/j.camwa.2024.04.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On favorable bounds on the spectrum of discretized Steklov-Poincaré operator and applications to domain decomposition methods in 2D
Popis výsledku v původním jazyce
The efficiency of numerical solvers of PDEs depends on the approximation properties of the discretization methods and the conditioning of the resulting linear systems. If applicable, the boundary element methods typically provide better approximation with unknowns limited to the boundary than the Schur complement of the finite element stiffness matrix with respect to the interior variables. Since both matrices correctly approximate the same object, the Steklov-Poincaré operator, it is natural to assume that the matrices corresponding to the same fine boundary discretization are similar. However, this note shows that the distribution of the spectrum of the boundary element stiffness matrix is significantly better conditioned than the finite element Schur complement. The effect of the favorable conditioning of BETI clusters is demonstrated by solving huge problems by H-TBETI-DP and H-TFETI-DP. (C) 2024 Elsevier Ltd
Název v anglickém jazyce
On favorable bounds on the spectrum of discretized Steklov-Poincaré operator and applications to domain decomposition methods in 2D
Popis výsledku anglicky
The efficiency of numerical solvers of PDEs depends on the approximation properties of the discretization methods and the conditioning of the resulting linear systems. If applicable, the boundary element methods typically provide better approximation with unknowns limited to the boundary than the Schur complement of the finite element stiffness matrix with respect to the interior variables. Since both matrices correctly approximate the same object, the Steklov-Poincaré operator, it is natural to assume that the matrices corresponding to the same fine boundary discretization are similar. However, this note shows that the distribution of the spectrum of the boundary element stiffness matrix is significantly better conditioned than the finite element Schur complement. The effect of the favorable conditioning of BETI clusters is demonstrated by solving huge problems by H-TBETI-DP and H-TFETI-DP. (C) 2024 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-13220S" target="_blank" >GA22-13220S: Vývoj iteračních algoritmů pro řešení kontaktních úloh vyskytujících se při analýze šroubových spojů ocelových konstrukcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Mathematics with Applications
ISSN
0898-1221
e-ISSN
—
Svazek periodika
167
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
12-20
Kód UT WoS článku
001242886600001
EID výsledku v databázi Scopus
2-s2.0-85192869860