Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reduce Power Energy Cost Using Hybrid Six Sigma Based on Fuzzy MADM: A Case Study in Mechanical Factory

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256085" target="_blank" >RIV/61989100:27240/24:10256085 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10497600" target="_blank" >https://ieeexplore.ieee.org/document/10497600</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3388202" target="_blank" >10.1109/ACCESS.2024.3388202</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reduce Power Energy Cost Using Hybrid Six Sigma Based on Fuzzy MADM: A Case Study in Mechanical Factory

  • Popis výsledku v původním jazyce

    Production costs are always the top concern of company managers in improving production and business efficiency. The cost of energy is one of the major costs that manufacturing companies must pay. This research paper proposes a Hybrid Six Sigma method based on fuzzy Multi-Attribute Decision Making (MADM), Industry 4.0, and digital numerical control (DNC). A fuzzy MADM method to select problems to improve and build an Industry 4.0 system with Internet of Things (IoT) devices, calling for automatic machining programs using Radio Frequency Identification (RFID) systems and management. Manage production equipment maintenance system using a digital numerical control (DNC) system. Measuring industry 4.0 system user satisfaction in manufacturing using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results of research on applying industry 4.0 techniques to the induction heat treatment process eliminate the dependence on worker skills and simplify the operation of the induction heat treatment process. Improve employee satisfaction with process operating conditions. Reduce the cost of electrical energy arising due to the coil maintenance system by applying the Industry 4.0 system. The result after the improvement is that the defect rate decreased from 47.2% to 4.9%. In terms of money, the reduction in losses due to defects is reduced from 6,593 USD per year to 549 USD per year. This research paper builds a sample continuous improvement model to apply to other production processes at other manufacturing companies in terms of applying industry 4.0 systems with IoT devices such as RFID and barcode readers in operations. automatically call the machining program of the machining machine and build an autonomous and preventive maintenance system using the industry 4.0 system to make improvements in process automation, smart data management, and analytics, using Internet of Things (IoT) to connect devices in the production process create a flexible production process.

  • Název v anglickém jazyce

    Reduce Power Energy Cost Using Hybrid Six Sigma Based on Fuzzy MADM: A Case Study in Mechanical Factory

  • Popis výsledku anglicky

    Production costs are always the top concern of company managers in improving production and business efficiency. The cost of energy is one of the major costs that manufacturing companies must pay. This research paper proposes a Hybrid Six Sigma method based on fuzzy Multi-Attribute Decision Making (MADM), Industry 4.0, and digital numerical control (DNC). A fuzzy MADM method to select problems to improve and build an Industry 4.0 system with Internet of Things (IoT) devices, calling for automatic machining programs using Radio Frequency Identification (RFID) systems and management. Manage production equipment maintenance system using a digital numerical control (DNC) system. Measuring industry 4.0 system user satisfaction in manufacturing using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results of research on applying industry 4.0 techniques to the induction heat treatment process eliminate the dependence on worker skills and simplify the operation of the induction heat treatment process. Improve employee satisfaction with process operating conditions. Reduce the cost of electrical energy arising due to the coil maintenance system by applying the Industry 4.0 system. The result after the improvement is that the defect rate decreased from 47.2% to 4.9%. In terms of money, the reduction in losses due to defects is reduced from 6,593 USD per year to 549 USD per year. This research paper builds a sample continuous improvement model to apply to other production processes at other manufacturing companies in terms of applying industry 4.0 systems with IoT devices such as RFID and barcode readers in operations. automatically call the machining program of the machining machine and build an autonomous and preventive maintenance system using the industry 4.0 system to make improvements in process automation, smart data management, and analytics, using Internet of Things (IoT) to connect devices in the production process create a flexible production process.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    71379-71405

  • Kód UT WoS článku

    001231439500001

  • EID výsledku v databázi Scopus