Knowledge-Based Maintenance Management System of Compressed Air System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00367262" target="_blank" >RIV/68407700:21220/23:00367262 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-38274-1_17" target="_blank" >https://doi.org/10.1007/978-3-031-38274-1_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-38274-1_17" target="_blank" >10.1007/978-3-031-38274-1_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Knowledge-Based Maintenance Management System of Compressed Air System
Popis výsledku v původním jazyce
Industry 4.0 is used to describe the current trend towards automation and data exchange in the manufacturing process, including machine learning with the help of artificial intelligence and the Internet of Things. It is revolutionising not only the production process, but also maintenance policies. Maintenance policies applied from the past to the present provide limited support in providing the optimum maintenance management system (MMS) to increase economic efficiency. For this reason, industrial companies are starting to switch to knowledge-based maintenance (KBM) management systems supported by prescriptive maintenance policies in their production processes. One of the vital energy suppliers of production processes is compressed air system (CAS). Most manufacturing processes require so much compressed air that, for example, around 10% of the annual electrical energy consumption of industries in Europe comes from CAS. Although its importance in production processes is so high, appropriate MMS applications are insufficient for choosing the right maintenance policies in CAS. Although there are studies on the management system of CAS, there is no knowledge-based compressed air maintenance management model with integrated prescriptive maintenance policy. This article aims to examine the concept of maintenance, policies, and management systems in Industry 4.0 and CAS. This paper presents a knowledge-based maintenance management of compressed air system framework compatible with Industry 4.0. In conclusion, this research is a preliminary article for CAS. KBM management system supported by Industry 4.0 technologies and other research.
Název v anglickém jazyce
Knowledge-Based Maintenance Management System of Compressed Air System
Popis výsledku anglicky
Industry 4.0 is used to describe the current trend towards automation and data exchange in the manufacturing process, including machine learning with the help of artificial intelligence and the Internet of Things. It is revolutionising not only the production process, but also maintenance policies. Maintenance policies applied from the past to the present provide limited support in providing the optimum maintenance management system (MMS) to increase economic efficiency. For this reason, industrial companies are starting to switch to knowledge-based maintenance (KBM) management systems supported by prescriptive maintenance policies in their production processes. One of the vital energy suppliers of production processes is compressed air system (CAS). Most manufacturing processes require so much compressed air that, for example, around 10% of the annual electrical energy consumption of industries in Europe comes from CAS. Although its importance in production processes is so high, appropriate MMS applications are insufficient for choosing the right maintenance policies in CAS. Although there are studies on the management system of CAS, there is no knowledge-based compressed air maintenance management model with integrated prescriptive maintenance policy. This article aims to examine the concept of maintenance, policies, and management systems in Industry 4.0 and CAS. This paper presents a knowledge-based maintenance management of compressed air system framework compatible with Industry 4.0. In conclusion, this research is a preliminary article for CAS. KBM management system supported by Industry 4.0 technologies and other research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ISIEA 2023
ISBN
978-3-031-38273-4
ISSN
2367-3370
e-ISSN
—
Počet stran výsledku
12
Strana od-do
197-208
Název nakladatele
Springer, Cham
Místo vydání
—
Místo konání akce
Bozen-Bolzano
Datum konání akce
22. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—