Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Vehicle Re-Identification Based on Multiple Magnetic Signatures Features Evaluation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256133" target="_blank" >RIV/61989100:27240/24:10256133 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609373" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609373</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3433615" target="_blank" >10.1109/ACCESS.2024.3433615</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Vehicle Re-Identification Based on Multiple Magnetic Signatures Features Evaluation

  • Popis výsledku v původním jazyce

    In Intelligent Transportation Systems the identification and tracking of vehicles play an important role in enhancing traffic management, security, and overall road safety. Traditional means for vehicle re-identification rely solely on video-based systems which are not resilient to harsh environment conditions, suffer from visual obstructions, and are facing other challenges. To address these shortcomings and provide a more robust solution, alternative methods can be employed. This study addresses the gap in vehicle re-identification accuracy under harsh environmental conditions and visual obstructions faced by traditional video-based systems by integrating magnetic sensors into the road surface. The essence of this study revolves around a comprehensive comparison of various algorithms employed for feature extraction from registered magnetic field distortions. These distortions are treated as transient time series and various distance metrics are applied to calculate their similarity. Useful features are extracted and their classification performance is compared using a single neighbor classifier also taking into account calculation time. The validation experiments demonstrate the efficacy of presented approach in extracting critical features that hold the potential for successfully re-identifying same vehicles. For tested subset up to 90 % re-identification accuracy can be reached. The main contribution of this work involves determining which magnetic sensor axis to use-whether single or in combination-and identifying the most effective methods for feature extraction from the registered magnetic field distortions. Authors

  • Název v anglickém jazyce

    Vehicle Re-Identification Based on Multiple Magnetic Signatures Features Evaluation

  • Popis výsledku anglicky

    In Intelligent Transportation Systems the identification and tracking of vehicles play an important role in enhancing traffic management, security, and overall road safety. Traditional means for vehicle re-identification rely solely on video-based systems which are not resilient to harsh environment conditions, suffer from visual obstructions, and are facing other challenges. To address these shortcomings and provide a more robust solution, alternative methods can be employed. This study addresses the gap in vehicle re-identification accuracy under harsh environmental conditions and visual obstructions faced by traditional video-based systems by integrating magnetic sensors into the road surface. The essence of this study revolves around a comprehensive comparison of various algorithms employed for feature extraction from registered magnetic field distortions. These distortions are treated as transient time series and various distance metrics are applied to calculate their similarity. Useful features are extracted and their classification performance is compared using a single neighbor classifier also taking into account calculation time. The validation experiments demonstrate the efficacy of presented approach in extracting critical features that hold the potential for successfully re-identifying same vehicles. For tested subset up to 90 % re-identification accuracy can be reached. The main contribution of this work involves determining which magnetic sensor axis to use-whether single or in combination-and identifying the most effective methods for feature extraction from the registered magnetic field distortions. Authors

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    July 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    102606-102618

  • Kód UT WoS článku

    001380690600042

  • EID výsledku v databázi Scopus

    2-s2.0-85199539511