Methods for Magnetic Signature Comparison Evaluation in Vehicle Re-Identification Context
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256132" target="_blank" >RIV/61989100:27240/24:10256132 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2079-9292/13/14/2722" target="_blank" >https://www.mdpi.com/2079-9292/13/14/2722</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/electronics13142722" target="_blank" >10.3390/electronics13142722</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Methods for Magnetic Signature Comparison Evaluation in Vehicle Re-Identification Context
Popis výsledku v původním jazyce
Intelligent transportation systems represent innovative solutions for traffic congestion minimization, mobility improvements and safety enhancement. These systems require various inputs about vehicles and traffic state. Vehicle re-identification systems based on video cameras are most popular; however, more strict privacy policy necessitates depersonalized vehicle re-identification systems. Promising research for depersonalized vehicle re-identification systems involves leveraging the captured unique distortions induced in the Earth's magnetic field by passing vehicles. Employing anisotropic magneto-resistive sensors embedded in the road surface system captures vehicle magnetic signatures for similarity evaluation. A novel vehicle re-identification algorithm utilizing Euclidean distances and Pearson correlation coefficients is analyzed, and performance is evaluated. Initial processing is applied on registered magnetic signatures, useful features for decision making are extracted, different classification algorithms are applied and prediction accuracy is checked. The results demonstrate the effectiveness of our approach, achieving 97% accuracy in vehicle re-identification for a subset of 300 different vehicles passing the sensor a few times. (C) 2024 by the authors.
Název v anglickém jazyce
Methods for Magnetic Signature Comparison Evaluation in Vehicle Re-Identification Context
Popis výsledku anglicky
Intelligent transportation systems represent innovative solutions for traffic congestion minimization, mobility improvements and safety enhancement. These systems require various inputs about vehicles and traffic state. Vehicle re-identification systems based on video cameras are most popular; however, more strict privacy policy necessitates depersonalized vehicle re-identification systems. Promising research for depersonalized vehicle re-identification systems involves leveraging the captured unique distortions induced in the Earth's magnetic field by passing vehicles. Employing anisotropic magneto-resistive sensors embedded in the road surface system captures vehicle magnetic signatures for similarity evaluation. A novel vehicle re-identification algorithm utilizing Euclidean distances and Pearson correlation coefficients is analyzed, and performance is evaluated. Initial processing is applied on registered magnetic signatures, useful features for decision making are extracted, different classification algorithms are applied and prediction accuracy is checked. The results demonstrate the effectiveness of our approach, achieving 97% accuracy in vehicle re-identification for a subset of 300 different vehicles passing the sensor a few times. (C) 2024 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronics
ISSN
2079-9292
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
001277104100001
EID výsledku v databázi Scopus
2-s2.0-85199629517