Solving Maxwell Equations in Hybrid Electrical Vehicle to Optimal Design by Multi-Objective Optimization Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256264" target="_blank" >RIV/61989100:27240/24:10256264 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10256264
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10772457" target="_blank" >https://ieeexplore.ieee.org/document/10772457</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3510537" target="_blank" >10.1109/ACCESS.2024.3510537</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving Maxwell Equations in Hybrid Electrical Vehicle to Optimal Design by Multi-Objective Optimization Algorithms
Popis výsledku v původním jazyce
Hybrid Electrical Vehicles (HEVs) have three magnetic field sources: armature winding currents; permanent magnets; and field winding current. To initiate the investigation, the magnetic field distributions due to those sources are obtained. First, Maxwell's equations need to be solved. Then, the machine is analyzed and the operational indices such as unbalanced magnetic force (UMF) in x- and y direction and instantaneous torque are calculated by using the magnetic flux density distribution. Next, various magnetization patterns, which are presented based on Fourier series, are considered to investigate their influences on the performance of the machine. It is assumed the volume of the machine is determined thanks to thermal considerations. As a result, it is constant so it is maximized average torque instead of torque per volume ratio. After that, the average and ripple of the instantaneous torque are expressed in terms of pole arc to pole pitch ratio by using curve fitting. Finally, the optimal value of average torque and torque ripple are also computed by multi-objective optimization algorithms.
Název v anglickém jazyce
Solving Maxwell Equations in Hybrid Electrical Vehicle to Optimal Design by Multi-Objective Optimization Algorithms
Popis výsledku anglicky
Hybrid Electrical Vehicles (HEVs) have three magnetic field sources: armature winding currents; permanent magnets; and field winding current. To initiate the investigation, the magnetic field distributions due to those sources are obtained. First, Maxwell's equations need to be solved. Then, the machine is analyzed and the operational indices such as unbalanced magnetic force (UMF) in x- and y direction and instantaneous torque are calculated by using the magnetic flux density distribution. Next, various magnetization patterns, which are presented based on Fourier series, are considered to investigate their influences on the performance of the machine. It is assumed the volume of the machine is determined thanks to thermal considerations. As a result, it is constant so it is maximized average torque instead of torque per volume ratio. After that, the average and ripple of the instantaneous torque are expressed in terms of pole arc to pole pitch ratio by using curve fitting. Finally, the optimal value of average torque and torque ripple are also computed by multi-objective optimization algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
VOLUME 12, 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
183743-183750
Kód UT WoS článku
001380709600045
EID výsledku v databázi Scopus
2-s2.0-85211445689