Automated search of an optimal configuration of FETI-based algorithms with the swarm and evolutionary algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256344" target="_blank" >RIV/61989100:27240/24:10256344 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15410/24:73628329 RIV/61989100:27740/24:10256344
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494624012110?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624012110?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2024.112437" target="_blank" >10.1016/j.asoc.2024.112437</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated search of an optimal configuration of FETI-based algorithms with the swarm and evolutionary algorithms
Popis výsledku v původním jazyce
Finite Element Tearing and Interconnecting (FETI) methods are used in the engineering community to solve extremely large engineering simulations on clusters and supercomputers with thousands of computational nodes. This paper focuses on minimizing the execution time of these methods by searching for an optimal configuration with swarm and evolutionary algorithms (SEAs). It incorporates optimization of an expensive cost function (taking tens to hundreds of seconds) of discrete search space with up to hundreds of thousands of combinations constrained by its boundaries and incompatible individuals (invalid combination of FETI solver parameters). In addition, the optimization occurs in real time, i.e., during a simulation. Hence, the number of objective function evaluations must remain low (tens to lower hundreds). The paper compares the performance of 3 basic SEAs with a reduced population size (Differential Evolution, Particle Swarm Optimization, and Self-Organizing Migrating Algorithm), 4 micro SEAs (Micro Differential Evolution Ray, Improved Micro-Particle Swarm Optimization, Micro-Particle Swarm Optimization, and Micro-Genetic Algorithm), and a random search on 4 distinct time-dependent simulations of a heat transfer. The experiments show that basic SEAs with a small population (about 5 individuals) and a penalty system as protection against incompatible configurations represent the most effective solution. One can use them to find the optimal configuration of FETI-based methods in approximately 130 evaluations. It can improve the utilization of expensive hardware resources of modern computational clusters.
Název v anglickém jazyce
Automated search of an optimal configuration of FETI-based algorithms with the swarm and evolutionary algorithms
Popis výsledku anglicky
Finite Element Tearing and Interconnecting (FETI) methods are used in the engineering community to solve extremely large engineering simulations on clusters and supercomputers with thousands of computational nodes. This paper focuses on minimizing the execution time of these methods by searching for an optimal configuration with swarm and evolutionary algorithms (SEAs). It incorporates optimization of an expensive cost function (taking tens to hundreds of seconds) of discrete search space with up to hundreds of thousands of combinations constrained by its boundaries and incompatible individuals (invalid combination of FETI solver parameters). In addition, the optimization occurs in real time, i.e., during a simulation. Hence, the number of objective function evaluations must remain low (tens to lower hundreds). The paper compares the performance of 3 basic SEAs with a reduced population size (Differential Evolution, Particle Swarm Optimization, and Self-Organizing Migrating Algorithm), 4 micro SEAs (Micro Differential Evolution Ray, Improved Micro-Particle Swarm Optimization, Micro-Particle Swarm Optimization, and Micro-Genetic Algorithm), and a random search on 4 distinct time-dependent simulations of a heat transfer. The experiments show that basic SEAs with a small population (about 5 individuals) and a penalty system as protection against incompatible configurations represent the most effective solution. One can use them to find the optimal configuration of FETI-based methods in approximately 130 evaluations. It can improve the utilization of expensive hardware resources of modern computational clusters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
1872-9681
Svazek periodika
167
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
001361443400001
EID výsledku v databázi Scopus
2-s2.0-85209370135