Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automated search of an optimal configuration of FETI-based algorithms with the swarm and evolutionary algorithms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256344" target="_blank" >RIV/61989100:27240/24:10256344 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15410/24:73628329 RIV/61989100:27740/24:10256344

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494624012110?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624012110?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2024.112437" target="_blank" >10.1016/j.asoc.2024.112437</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automated search of an optimal configuration of FETI-based algorithms with the swarm and evolutionary algorithms

  • Popis výsledku v původním jazyce

    Finite Element Tearing and Interconnecting (FETI) methods are used in the engineering community to solve extremely large engineering simulations on clusters and supercomputers with thousands of computational nodes. This paper focuses on minimizing the execution time of these methods by searching for an optimal configuration with swarm and evolutionary algorithms (SEAs). It incorporates optimization of an expensive cost function (taking tens to hundreds of seconds) of discrete search space with up to hundreds of thousands of combinations constrained by its boundaries and incompatible individuals (invalid combination of FETI solver parameters). In addition, the optimization occurs in real time, i.e., during a simulation. Hence, the number of objective function evaluations must remain low (tens to lower hundreds). The paper compares the performance of 3 basic SEAs with a reduced population size (Differential Evolution, Particle Swarm Optimization, and Self-Organizing Migrating Algorithm), 4 micro SEAs (Micro Differential Evolution Ray, Improved Micro-Particle Swarm Optimization, Micro-Particle Swarm Optimization, and Micro-Genetic Algorithm), and a random search on 4 distinct time-dependent simulations of a heat transfer. The experiments show that basic SEAs with a small population (about 5 individuals) and a penalty system as protection against incompatible configurations represent the most effective solution. One can use them to find the optimal configuration of FETI-based methods in approximately 130 evaluations. It can improve the utilization of expensive hardware resources of modern computational clusters.

  • Název v anglickém jazyce

    Automated search of an optimal configuration of FETI-based algorithms with the swarm and evolutionary algorithms

  • Popis výsledku anglicky

    Finite Element Tearing and Interconnecting (FETI) methods are used in the engineering community to solve extremely large engineering simulations on clusters and supercomputers with thousands of computational nodes. This paper focuses on minimizing the execution time of these methods by searching for an optimal configuration with swarm and evolutionary algorithms (SEAs). It incorporates optimization of an expensive cost function (taking tens to hundreds of seconds) of discrete search space with up to hundreds of thousands of combinations constrained by its boundaries and incompatible individuals (invalid combination of FETI solver parameters). In addition, the optimization occurs in real time, i.e., during a simulation. Hence, the number of objective function evaluations must remain low (tens to lower hundreds). The paper compares the performance of 3 basic SEAs with a reduced population size (Differential Evolution, Particle Swarm Optimization, and Self-Organizing Migrating Algorithm), 4 micro SEAs (Micro Differential Evolution Ray, Improved Micro-Particle Swarm Optimization, Micro-Particle Swarm Optimization, and Micro-Genetic Algorithm), and a random search on 4 distinct time-dependent simulations of a heat transfer. The experiments show that basic SEAs with a small population (about 5 individuals) and a penalty system as protection against incompatible configurations represent the most effective solution. One can use them to find the optimal configuration of FETI-based methods in approximately 130 evaluations. It can improve the utilization of expensive hardware resources of modern computational clusters.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    167

  • Číslo periodika v rámci svazku

    December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    16

  • Strana od-do

  • Kód UT WoS článku

    001361443400001

  • EID výsledku v databázi Scopus

    2-s2.0-85209370135