K-Mean Algorithm to Support Energy Future Decision for Household with PV and EV
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256465" target="_blank" >RIV/61989100:27240/24:10256465 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10751226" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10751226</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EEEIC/ICPSEurope61470.2024.10751226" target="_blank" >10.1109/EEEIC/ICPSEurope61470.2024.10751226</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
K-Mean Algorithm to Support Energy Future Decision for Household with PV and EV
Popis výsledku v původním jazyce
This paper explores the application of the K-means clustering algorithm to analyze household energy data, focusing on electricity demand, photovoltaic (PV) generation, and electric vehicle (EV) charging. The objective is to identify distinct patterns of energy usage and generation, which can inform better energy management and decision-making strategies. Using data from a London household, we apply K-means clustering to segment the energy usage into meaningful clusters. The analysis reveals distinct profiles corresponding to different times of day and types of energy consumption and generation. Key findings suggest that clustering can effectively differentiate between high and low usage periods, the impact of PV generation on household energy dynamics, and the charging patterns of EVs. The results of this study provide valuable insights into how households can optimize energy consumption and leverage their PV and EV systems more effectively. Additionally, the paper discusses the implications of these findings for future energy policy and smart grid development. Recommendations are offered for integrating advanced data analytics into residential energy management systems to enhance sustainability and efficiency.
Název v anglickém jazyce
K-Mean Algorithm to Support Energy Future Decision for Household with PV and EV
Popis výsledku anglicky
This paper explores the application of the K-means clustering algorithm to analyze household energy data, focusing on electricity demand, photovoltaic (PV) generation, and electric vehicle (EV) charging. The objective is to identify distinct patterns of energy usage and generation, which can inform better energy management and decision-making strategies. Using data from a London household, we apply K-means clustering to segment the energy usage into meaningful clusters. The analysis reveals distinct profiles corresponding to different times of day and types of energy consumption and generation. Key findings suggest that clustering can effectively differentiate between high and low usage periods, the impact of PV generation on household energy dynamics, and the charging patterns of EVs. The results of this study provide valuable insights into how households can optimize energy consumption and leverage their PV and EV systems more effectively. Additionally, the paper discusses the implications of these findings for future energy policy and smart grid development. Recommendations are offered for integrating advanced data analytics into residential energy management systems to enhance sustainability and efficiency.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
24th EEEIC International Conference on Environment and Electrical Engineering and 8th I and CPS Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2024 : conference proceedings
ISBN
979-8-3503-5519-2
ISSN
2994-9440
e-ISSN
2994-9467
Počet stran výsledku
4
Strana od-do
1-4
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Řím
Datum konání akce
17. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—