Research for an enhanced fault-tolerant solution against the current sensor fault types in induction motor drives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256496" target="_blank" >RIV/61989100:27240/24:10256496 - isvavai.cz</a>
Výsledek na webu
<a href="http://eie.khpi.edu.ua/article/view/303285" target="_blank" >http://eie.khpi.edu.ua/article/view/303285</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.20998/2074-272X.2024.6.04" target="_blank" >10.20998/2074-272X.2024.6.04</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Research for an enhanced fault-tolerant solution against the current sensor fault types in induction motor drives
Popis výsledku v původním jazyce
Introduction. Recently, three-phase induction motor drives have been widely used in industrial applications; however, the feedback signal failures of current sensors can seriously degrade the operation performance of the entire drive system. Therefore, the motor drives require a proper solution to prevent current sensor faults and improve the reliability of the motor drive systems. The novelty of the proposed research includes integrating the current sensor fault-tolerant control (FTC) function according to enhanced technique into the field-oriented control loop for speed control of the motor drive system. Purpose. This research proposes a hybrid method involving a third difference operator and signal comparison algorithm to diagnose various types of current sensor faults as a positive solution to enhance the stability of the induction motor drive system. Methods. A hybrid method involving a third difference operator for the measured speed signals and a comparison algorithm between measured and estimated current signals are proposed to diagnose the current sensors' health status in the fault-tolerant process. After determining the faulty sensor, the estimated current signals based on the Luenberger observer are used immediately to replace the defective sensor signal. Results. The current sensor is simulated with various failure types, from standard to rare failures, to evaluate the performance of the FTC method implemented in the MATLAB/Simulink environment. Simultaneously, a fault flag corresponding to a defective sensor should be presented as an indicator to execute the repair process for faulty sensors at the proper time. Practical value. Positive results have proven the feasibility and effectiveness of the proposed FTC integrated into the speed controller to improve reliability and ensure the stable operation of the induction motor drive system even under current sensor fault conditions. References 29, tables 3, figures 10.
Název v anglickém jazyce
Research for an enhanced fault-tolerant solution against the current sensor fault types in induction motor drives
Popis výsledku anglicky
Introduction. Recently, three-phase induction motor drives have been widely used in industrial applications; however, the feedback signal failures of current sensors can seriously degrade the operation performance of the entire drive system. Therefore, the motor drives require a proper solution to prevent current sensor faults and improve the reliability of the motor drive systems. The novelty of the proposed research includes integrating the current sensor fault-tolerant control (FTC) function according to enhanced technique into the field-oriented control loop for speed control of the motor drive system. Purpose. This research proposes a hybrid method involving a third difference operator and signal comparison algorithm to diagnose various types of current sensor faults as a positive solution to enhance the stability of the induction motor drive system. Methods. A hybrid method involving a third difference operator for the measured speed signals and a comparison algorithm between measured and estimated current signals are proposed to diagnose the current sensors' health status in the fault-tolerant process. After determining the faulty sensor, the estimated current signals based on the Luenberger observer are used immediately to replace the defective sensor signal. Results. The current sensor is simulated with various failure types, from standard to rare failures, to evaluate the performance of the FTC method implemented in the MATLAB/Simulink environment. Simultaneously, a fault flag corresponding to a defective sensor should be presented as an indicator to execute the repair process for faulty sensors at the proper time. Practical value. Positive results have proven the feasibility and effectiveness of the proposed FTC integrated into the speed controller to improve reliability and ensure the stable operation of the induction motor drive system even under current sensor fault conditions. References 29, tables 3, figures 10.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrical Engineering and Electromechanics
ISSN
2074-272X
e-ISSN
2309-3404
Svazek periodika
2024
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
UA - Ukrajina
Počet stran výsledku
6
Strana od-do
27-32
Kód UT WoS článku
001336910800004
EID výsledku v databázi Scopus
—