An activity level based surrogate-assisted evolutionary algorithm for many-objective optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256809" target="_blank" >RIV/61989100:27240/24:10256809 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494624007415?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624007415?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2024.111967" target="_blank" >10.1016/j.asoc.2024.111967</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An activity level based surrogate-assisted evolutionary algorithm for many-objective optimization
Popis výsledku v původním jazyce
Addressing expensive many-objective optimization problems (MaOPs) is a formidable challenge owing to their intricate objective spaces and high computational demands. Surrogate-assisted evolutionary algorithms (SAEAs) have gained prominence because of their ability to tackle MaOPs efficiently. They achieve this by using surrogate models to approximate objective functions, significantly reducing their reliance on costly evaluations. However, the effectiveness of many SAEAs is hampered by their reliance on various surrogate models and optimization strategies, which often result in suboptimal prediction accuracy and optimization performance. This study introduces a novel approach: an activity level based surrogate-assisted reference vector guided evolutionary algorithm specifically designed for expensive MaOPs. Utilizing the Kriging model and an angle penalty distance criterion, this algorithm effectively filters solutions that require evaluation using the original function. It employs a fixed number of training sets,that are updated via a two-screening strategy that leverages activity levels to refine population screening. This process ensures that the reference vector progressively aligns more closely with the Pareto fronts,which is enhanced by the deployment of adjusted adaptive reference vectors, thereby improving the screening precision. The proposed algorithm was tested against six contemporary algorithms using the DTLZ, WFG, and MaF test suites. The experimental results show that the proposed method outperforms other algorithms in most problems. Furthermore, its application to the cloud computing task scheduling problem underscores its practical value, demonstrating its notable effectiveness. The experimental outcomes attest to the robust performance of the algorithm across both test scenarios and real-world applications.
Název v anglickém jazyce
An activity level based surrogate-assisted evolutionary algorithm for many-objective optimization
Popis výsledku anglicky
Addressing expensive many-objective optimization problems (MaOPs) is a formidable challenge owing to their intricate objective spaces and high computational demands. Surrogate-assisted evolutionary algorithms (SAEAs) have gained prominence because of their ability to tackle MaOPs efficiently. They achieve this by using surrogate models to approximate objective functions, significantly reducing their reliance on costly evaluations. However, the effectiveness of many SAEAs is hampered by their reliance on various surrogate models and optimization strategies, which often result in suboptimal prediction accuracy and optimization performance. This study introduces a novel approach: an activity level based surrogate-assisted reference vector guided evolutionary algorithm specifically designed for expensive MaOPs. Utilizing the Kriging model and an angle penalty distance criterion, this algorithm effectively filters solutions that require evaluation using the original function. It employs a fixed number of training sets,that are updated via a two-screening strategy that leverages activity levels to refine population screening. This process ensures that the reference vector progressively aligns more closely with the Pareto fronts,which is enhanced by the deployment of adjusted adaptive reference vectors, thereby improving the screening precision. The proposed algorithm was tested against six contemporary algorithms using the DTLZ, WFG, and MaF test suites. The experimental results show that the proposed method outperforms other algorithms in most problems. Furthermore, its application to the cloud computing task scheduling problem underscores its practical value, demonstrating its notable effectiveness. The experimental outcomes attest to the robust performance of the algorithm across both test scenarios and real-world applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
1872-9681
Svazek periodika
164
Číslo periodika v rámci svazku
říjen 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
001271671100001
EID výsledku v databázi Scopus
—