Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unraveling human social behavior motivations via inverse reinforcement learning-based link prediction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256844" target="_blank" >RIV/61989100:27240/24:10256844 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00607-024-01279-w" target="_blank" >https://link.springer.com/article/10.1007/s00607-024-01279-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00607-024-01279-w" target="_blank" >10.1007/s00607-024-01279-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unraveling human social behavior motivations via inverse reinforcement learning-based link prediction

  • Popis výsledku v původním jazyce

    Link prediction aims to capture the evolution of network structure, especially in real social networks, which is conducive to friend recommendations, human contact trajectory simulation, and more. However, the challenge of the stochastic social behaviors and the unstable space-time distribution in such networks often leads to unexplainable and inaccurate link predictions. Therefore, taking inspiration from the success of imitation learning in simulating human driver behavior, we propose a dynamic network link prediction method based on inverse reinforcement learning (DN-IRL) to unravel the motivations behind social behaviors in social networks. Specifically, the historical social behaviors (link sequences) and a next behavior (a single link) are regarded as the current environmental state and the action taken by the agent, respectively. Subsequently, the reward function, which is designed to maximize the cumulative expected reward from expert behaviors in the raw data, is optimized and utilized to learn the agent&apos;s social policy. Furthermore, our approach incorporates the neighborhood structure based node embedding and the self-attention modules, enabling sensitivity to network structure and traceability to predicted links. Experimental results on real-world dynamic social networks demonstrate that DN-IRL achieves more accurate and explainable of prediction compared to the baselines.

  • Název v anglickém jazyce

    Unraveling human social behavior motivations via inverse reinforcement learning-based link prediction

  • Popis výsledku anglicky

    Link prediction aims to capture the evolution of network structure, especially in real social networks, which is conducive to friend recommendations, human contact trajectory simulation, and more. However, the challenge of the stochastic social behaviors and the unstable space-time distribution in such networks often leads to unexplainable and inaccurate link predictions. Therefore, taking inspiration from the success of imitation learning in simulating human driver behavior, we propose a dynamic network link prediction method based on inverse reinforcement learning (DN-IRL) to unravel the motivations behind social behaviors in social networks. Specifically, the historical social behaviors (link sequences) and a next behavior (a single link) are regarded as the current environmental state and the action taken by the agent, respectively. Subsequently, the reward function, which is designed to maximize the cumulative expected reward from expert behaviors in the raw data, is optimized and utilized to learn the agent&apos;s social policy. Furthermore, our approach incorporates the neighborhood structure based node embedding and the self-attention modules, enabling sensitivity to network structure and traceability to predicted links. Experimental results on real-world dynamic social networks demonstrate that DN-IRL achieves more accurate and explainable of prediction compared to the baselines.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computing

  • ISSN

    0010-485X

  • e-ISSN

    1436-5057

  • Svazek periodika

    106

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    24

  • Strana od-do

  • Kód UT WoS článku

    001194867800001

  • EID výsledku v databázi Scopus