Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Training artificial neural networks using self-organizing migrating algorithm for skin segmentation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256936" target="_blank" >RIV/61989100:27240/24:10256936 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27740/24:10256936

  • Výsledek na webu

    <a href="https://www.nature.com/articles/s41598-024-72884-0" target="_blank" >https://www.nature.com/articles/s41598-024-72884-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-72884-0" target="_blank" >10.1038/s41598-024-72884-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Training artificial neural networks using self-organizing migrating algorithm for skin segmentation

  • Popis výsledku v původním jazyce

    This study presents an application of the self-organizing migrating algorithm (SOMA) to train artificial neural networks for skin segmentation tasks. We compare the performance of SOMA with popular gradient-based optimization methods such as ADAM and SGDM, as well as with another evolutionary algorithm, differential evolution (DE). Experiments are conducted on the skin dataset, which consists of 245,057 samples with skin and non-skin labels. The results show that the neural network trained by SOMA achieves the highest accuracy (93.18%), outperforming ADAM (84.87%), SGDM (84.79%), and DE (91.32%). The visual evaluation also reveals the SOMA-trained neural network’s accurate and reliable segmentation capabilities in most cases. These findings highlight the potential of incorporating evolutionary optimization algorithms like SOMA into the training process of artificial neural networks, significantly improving performance in image segmentation tasks. © The Author(s) 2024.

  • Název v anglickém jazyce

    Training artificial neural networks using self-organizing migrating algorithm for skin segmentation

  • Popis výsledku anglicky

    This study presents an application of the self-organizing migrating algorithm (SOMA) to train artificial neural networks for skin segmentation tasks. We compare the performance of SOMA with popular gradient-based optimization methods such as ADAM and SGDM, as well as with another evolutionary algorithm, differential evolution (DE). Experiments are conducted on the skin dataset, which consists of 245,057 samples with skin and non-skin labels. The results show that the neural network trained by SOMA achieves the highest accuracy (93.18%), outperforming ADAM (84.87%), SGDM (84.79%), and DE (91.32%). The visual evaluation also reveals the SOMA-trained neural network’s accurate and reliable segmentation capabilities in most cases. These findings highlight the potential of incorporating evolutionary optimization algorithms like SOMA into the training process of artificial neural networks, significantly improving performance in image segmentation tasks. © The Author(s) 2024.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    001326080400039

  • EID výsledku v databázi Scopus

    2-s2.0-85205714007