Training artificial neural networks using self-organizing migrating algorithm for skin segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256936" target="_blank" >RIV/61989100:27240/24:10256936 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10256936
Výsledek na webu
<a href="https://www.nature.com/articles/s41598-024-72884-0" target="_blank" >https://www.nature.com/articles/s41598-024-72884-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-72884-0" target="_blank" >10.1038/s41598-024-72884-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Training artificial neural networks using self-organizing migrating algorithm for skin segmentation
Popis výsledku v původním jazyce
This study presents an application of the self-organizing migrating algorithm (SOMA) to train artificial neural networks for skin segmentation tasks. We compare the performance of SOMA with popular gradient-based optimization methods such as ADAM and SGDM, as well as with another evolutionary algorithm, differential evolution (DE). Experiments are conducted on the skin dataset, which consists of 245,057 samples with skin and non-skin labels. The results show that the neural network trained by SOMA achieves the highest accuracy (93.18%), outperforming ADAM (84.87%), SGDM (84.79%), and DE (91.32%). The visual evaluation also reveals the SOMA-trained neural network’s accurate and reliable segmentation capabilities in most cases. These findings highlight the potential of incorporating evolutionary optimization algorithms like SOMA into the training process of artificial neural networks, significantly improving performance in image segmentation tasks. © The Author(s) 2024.
Název v anglickém jazyce
Training artificial neural networks using self-organizing migrating algorithm for skin segmentation
Popis výsledku anglicky
This study presents an application of the self-organizing migrating algorithm (SOMA) to train artificial neural networks for skin segmentation tasks. We compare the performance of SOMA with popular gradient-based optimization methods such as ADAM and SGDM, as well as with another evolutionary algorithm, differential evolution (DE). Experiments are conducted on the skin dataset, which consists of 245,057 samples with skin and non-skin labels. The results show that the neural network trained by SOMA achieves the highest accuracy (93.18%), outperforming ADAM (84.87%), SGDM (84.79%), and DE (91.32%). The visual evaluation also reveals the SOMA-trained neural network’s accurate and reliable segmentation capabilities in most cases. These findings highlight the potential of incorporating evolutionary optimization algorithms like SOMA into the training process of artificial neural networks, significantly improving performance in image segmentation tasks. © The Author(s) 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
001326080400039
EID výsledku v databázi Scopus
2-s2.0-85205714007