Machine Learning Based Optimal Design of On-Road Charging Lane for Smart Cities Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257056" target="_blank" >RIV/61989100:27240/24:10257056 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10530012" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10530012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JESTPE.2024.3400292" target="_blank" >10.1109/JESTPE.2024.3400292</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning Based Optimal Design of On-Road Charging Lane for Smart Cities Applications
Popis výsledku v původním jazyce
The rapid advancement of electric vehicle (EV) technology toward environmentally friendly transportation emphasizes the necessity of dynamic wireless charging. However, challenges, such as the initial charging infrastructure cost, power transfer efficiency, and output power pulsation, pose significant limitations to dynamic wireless charging. Overcoming these challenges requires optimizing the design of various functional elements in dynamic charging, including the magnetic coupler, spacing between couplers, high-frequency inverter, and compensators. Despite the nonlinear relationships among these elements, obtaining mathematical relations proves cumbersome. This article proposes an effective machine learning (ML) approach to achieve the optimal design of the charging track, considering the cross-coupling effect. The algorithm not only aids in estimating the infrastructure cost of the charging lane but also predicts optimal design parameters using trained data. The ML approach, which predicts optimal design parameters with a trained dataset, is more efficient with reduced duration than conventional finite element analysis (FEA) tools and stochastic methods. The learning algorithms consider variables such as core structure, cross-coupling effect, and coil flux pipe length. Simulation and experimental prototype validation for a 3.3 kW system demonstrated an impressive efficiency of 93.21%.
Název v anglickém jazyce
Machine Learning Based Optimal Design of On-Road Charging Lane for Smart Cities Applications
Popis výsledku anglicky
The rapid advancement of electric vehicle (EV) technology toward environmentally friendly transportation emphasizes the necessity of dynamic wireless charging. However, challenges, such as the initial charging infrastructure cost, power transfer efficiency, and output power pulsation, pose significant limitations to dynamic wireless charging. Overcoming these challenges requires optimizing the design of various functional elements in dynamic charging, including the magnetic coupler, spacing between couplers, high-frequency inverter, and compensators. Despite the nonlinear relationships among these elements, obtaining mathematical relations proves cumbersome. This article proposes an effective machine learning (ML) approach to achieve the optimal design of the charging track, considering the cross-coupling effect. The algorithm not only aids in estimating the infrastructure cost of the charging lane but also predicts optimal design parameters using trained data. The ML approach, which predicts optimal design parameters with a trained dataset, is more efficient with reduced duration than conventional finite element analysis (FEA) tools and stochastic methods. The learning algorithms consider variables such as core structure, cross-coupling effect, and coil flux pipe length. Simulation and experimental prototype validation for a 3.3 kW system demonstrated an impressive efficiency of 93.21%.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal of Emerging and Selected Topics in Power Electronics
ISSN
2168-6777
e-ISSN
2168-6785
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
4296-4309
Kód UT WoS článku
001293897400079
EID výsledku v databázi Scopus
2-s2.0-85193258691