Performance Improvement of Wireless Power Transfer System for Sustainable EV Charging Using Dead-Time Integrated Pulse Density Modulation Approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257058" target="_blank" >RIV/61989100:27240/24:10257058 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2071-1050/16/16/7045" target="_blank" >https://www.mdpi.com/2071-1050/16/16/7045</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su16167045" target="_blank" >10.3390/su16167045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance Improvement of Wireless Power Transfer System for Sustainable EV Charging Using Dead-Time Integrated Pulse Density Modulation Approach
Popis výsledku v původním jazyce
The recent developments in electric vehicle (EV) necessities the requirement of a human intervention free charging system for safe and reliable operation. Wireless power transfer (WPT) technology shows promising options to automate the charging process with user convenience. However, the operation of the WPT system is designed to operate at a high-frequency (HF) range, which requires proper control and modulation technique to improve the performance of power electronic modules. This paper proposes a dead-time (DT) integrated Pulse Density Modulation (PDM) technique to provide better control with minimal voltage and current ripples at the switches. The proposed technique is investigated using a LCC-LCL compensated WPT system, which predominantly affects the high-frequency voltage and current ripples. The performance analysis is studied at different density conditions to explore the impact of the integrated PDM approach. Moreover, the PDM technique gives better control over the power transfer at different levels of load requirement. The simulation and experimental analysis was performed for a 3.7 kW WPT prototype test system under different modes of operation of the high-frequency power converters. Both the simulated and experimental results demonstrate that the proposed PDM technique effectively enhances the efficiency of the HF inverter while significantly reducing output current ripples, power dissipation and improving the overall WPT system efficiency to 92%, and leading to a reduction in the power loss in the range of 10% to 20%. This leads to improved overall system control and performance.
Název v anglickém jazyce
Performance Improvement of Wireless Power Transfer System for Sustainable EV Charging Using Dead-Time Integrated Pulse Density Modulation Approach
Popis výsledku anglicky
The recent developments in electric vehicle (EV) necessities the requirement of a human intervention free charging system for safe and reliable operation. Wireless power transfer (WPT) technology shows promising options to automate the charging process with user convenience. However, the operation of the WPT system is designed to operate at a high-frequency (HF) range, which requires proper control and modulation technique to improve the performance of power electronic modules. This paper proposes a dead-time (DT) integrated Pulse Density Modulation (PDM) technique to provide better control with minimal voltage and current ripples at the switches. The proposed technique is investigated using a LCC-LCL compensated WPT system, which predominantly affects the high-frequency voltage and current ripples. The performance analysis is studied at different density conditions to explore the impact of the integrated PDM approach. Moreover, the PDM technique gives better control over the power transfer at different levels of load requirement. The simulation and experimental analysis was performed for a 3.7 kW WPT prototype test system under different modes of operation of the high-frequency power converters. Both the simulated and experimental results demonstrate that the proposed PDM technique effectively enhances the efficiency of the HF inverter while significantly reducing output current ripples, power dissipation and improving the overall WPT system efficiency to 92%, and leading to a reduction in the power loss in the range of 10% to 20%. This leads to improved overall system control and performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainability
ISSN
2071-1050
e-ISSN
2071-1050
Svazek periodika
16
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
001305155800001
EID výsledku v databázi Scopus
2-s2.0-85202593293