Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A green hydrogen production model from solar powered water electrolyze based on deep chaotic Levy gazelle optimization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257229" target="_blank" >RIV/61989100:27240/24:10257229 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S221509862400260X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S221509862400260X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jestch.2024.101874" target="_blank" >10.1016/j.jestch.2024.101874</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A green hydrogen production model from solar powered water electrolyze based on deep chaotic Levy gazelle optimization

  • Popis výsledku v původním jazyce

    This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed DeepGaz, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Le&lt;acute accent&gt;vy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon&apos;s rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solarbased green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.

  • Název v anglickém jazyce

    A green hydrogen production model from solar powered water electrolyze based on deep chaotic Levy gazelle optimization

  • Popis výsledku anglicky

    This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed DeepGaz, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Le&lt;acute accent&gt;vy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon&apos;s rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solarbased green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Science and Technology, an International Journal

  • ISSN

    2215-0986

  • e-ISSN

  • Svazek periodika

    60

  • Číslo periodika v rámci svazku

    Dec

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

  • Kód UT WoS článku

    001356121800001

  • EID výsledku v databázi Scopus