A green hydrogen production model from solar powered water electrolyze based on deep chaotic Levy gazelle optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257229" target="_blank" >RIV/61989100:27240/24:10257229 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S221509862400260X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S221509862400260X?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jestch.2024.101874" target="_blank" >10.1016/j.jestch.2024.101874</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A green hydrogen production model from solar powered water electrolyze based on deep chaotic Levy gazelle optimization
Popis výsledku v původním jazyce
This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed DeepGaz, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Le<acute accent>vy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon's rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solarbased green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.
Název v anglickém jazyce
A green hydrogen production model from solar powered water electrolyze based on deep chaotic Levy gazelle optimization
Popis výsledku anglicky
This paper presents a Deep Learning (DL) model designed for green hydrogen production using a solar-powered water electrolyzer. The model operates in four phases, beginning with the analysis of a solar radiation dataset and culminating in the prediction of green hydrogen production. A novel hybrid model, termed DeepGaz, is introduced to predict the solar energy required for hydrogen production. DeepGaz combines a new Chaotic-Le<acute accent>vy variant of the gazelle optimization algorithm (CGOA) with a recurrent neural network (RNN/LSTM) for hyperparameter optimization. To validate the performance of the proposed model, CGOA is first tested on the CEC2022 benchmark problems and compared with other advanced metaheuristic algorithms, with its accuracy further confirmed using Wilcoxon's rank-sum statistical analysis. Subsequently, DeepGaz is applied to a solarbased green hydrogen dataset, optimizing key parameters such as solar radiation, temperature, wind direction, and speed, collected from the HI-SEAS weather station in Hawaii over a four-month period. The results show that DeepGaz significantly improves the prediction process, achieving an average daily hydrogen production of 15.5199 kg/day during the four-month study. The model exhibits strong potential in predicting green hydrogen production, excelling in computational time, convergence stability, and overall solution accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Science and Technology, an International Journal
ISSN
2215-0986
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
Dec
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
001356121800001
EID výsledku v databázi Scopus
—