Monitoring and analysis of burning in coal tailing dumps: a case study from the Czech Republic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F15%3A86090277" target="_blank" >RIV/61989100:27350/15:86090277 - isvavai.cz</a>
Výsledek na webu
<a href="http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=S1N8kBEKX9vEvv9HU9R&page=1&doc=2" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=1&SID=S1N8kBEKX9vEvv9HU9R&page=1&doc=2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12665-014-3883-4" target="_blank" >10.1007/s12665-014-3883-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monitoring and analysis of burning in coal tailing dumps: a case study from the Czech Republic
Popis výsledku v původním jazyce
The tailings are significant geological environments in mining and industrial regions. They represent special engineering-geological zones of anthropogenic sediments that require specific engineering-geological investigation. In particular, it is important to examine the sites in detail with regard to their potential heterogeneity. The article deals with an important engineering-geological issue of burning in coal mine and coal tailing dumps. A case study was implemented in a tailing dump in Heřmanice located in Ostrava which is a major industrial city of the Czech Republic. In this urban agglomeration, anthropogenic sediments form 20 % of all foundation soils. Thermometric monitoring in Heřmanice detected a thermally active coal tailing dump with burning as deep as 9 m. The burning is predominantly related to the content of oxygen in the body of the tailing. It belongs to the limiting conditions of the pyrophoric and consequently self-sustained burning. Other factors are sufficient contents and quality of coal mass and capacity to accumulate thermal energy of exothermal reactions. Dynamics of changes in the burning processes were identified in dependence on time, depth and distribution. There was a considerable heterogeneity of thermal activity as for all parameters, and changes were observed from the point of view of time. Considering the depth, burning gradually spread deeper. However, in the depth of 12 m, no significant thermal activity was observed within the overall studied locality. It may be stated that thermal activity is observed as much as 40 % of the studied area. Directionally, there was a progression of the process from west to east. The identified facts may be applied in final designed levels of coal tailing dumps where observational experiences identified intense cooling up to the height of 5 m preventing higher stages of self-ignition process (best situation).
Název v anglickém jazyce
Monitoring and analysis of burning in coal tailing dumps: a case study from the Czech Republic
Popis výsledku anglicky
The tailings are significant geological environments in mining and industrial regions. They represent special engineering-geological zones of anthropogenic sediments that require specific engineering-geological investigation. In particular, it is important to examine the sites in detail with regard to their potential heterogeneity. The article deals with an important engineering-geological issue of burning in coal mine and coal tailing dumps. A case study was implemented in a tailing dump in Heřmanice located in Ostrava which is a major industrial city of the Czech Republic. In this urban agglomeration, anthropogenic sediments form 20 % of all foundation soils. Thermometric monitoring in Heřmanice detected a thermally active coal tailing dump with burning as deep as 9 m. The burning is predominantly related to the content of oxygen in the body of the tailing. It belongs to the limiting conditions of the pyrophoric and consequently self-sustained burning. Other factors are sufficient contents and quality of coal mass and capacity to accumulate thermal energy of exothermal reactions. Dynamics of changes in the burning processes were identified in dependence on time, depth and distribution. There was a considerable heterogeneity of thermal activity as for all parameters, and changes were observed from the point of view of time. Considering the depth, burning gradually spread deeper. However, in the depth of 12 m, no significant thermal activity was observed within the overall studied locality. It may be stated that thermal activity is observed as much as 40 % of the studied area. Directionally, there was a progression of the process from west to east. The identified facts may be applied in final designed levels of coal tailing dumps where observational experiences identified intense cooling up to the height of 5 m preventing higher stages of self-ignition process (best situation).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JN - Stavebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/QI112A132" target="_blank" >QI112A132: Výzkum opatření k zajištění zásobování pitnou vodou v období klimatických změn</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Environmental Earth Sciences
ISSN
1866-6280
e-ISSN
—
Svazek periodika
73
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
6601-6612
Kód UT WoS článku
000353801300060
EID výsledku v databázi Scopus
—