The Neural Network Assisted Land Use Regression
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F21%3A10247922" target="_blank" >RIV/61989100:27350/21:10247922 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27360/21:10247922 RIV/61989100:27710/21:10247922
Výsledek na webu
<a href="https://doi.org/10.3390/atmos12040452" target="_blank" >https://doi.org/10.3390/atmos12040452</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/atmos12040452" target="_blank" >10.3390/atmos12040452</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Neural Network Assisted Land Use Regression
Popis výsledku v původním jazyce
Land Use Regression (LUR) is one of the air quality assessment modelling techniques. Its advantages lie mainly in a much simpler mathematical apparatus, quicker and simpler calculations, and a possibility to incorporate more factors affecting pollutant concentration than standard dispersion models. The goal of the study was to perform the LUR model in the Polish-Czech-Slovakian Tritia region, to test two sets of pollution data input factors, i.e., factors based on emission data and pollution dispersion model results, to test regression via neural networks and compare it with standard linear regression. Both input datasets, emission data and pollution dispersion model results, provided a similar quality of results in the case when standard linear regression was used, the R-2 of the models was 0.639 and 0.652. Neural network regression provided a significantly higher quality of the models, their R-2 was 0.937 and 0.938 for the factors based on emission data and pollution dispersion model results respectively.
Název v anglickém jazyce
The Neural Network Assisted Land Use Regression
Popis výsledku anglicky
Land Use Regression (LUR) is one of the air quality assessment modelling techniques. Its advantages lie mainly in a much simpler mathematical apparatus, quicker and simpler calculations, and a possibility to incorporate more factors affecting pollutant concentration than standard dispersion models. The goal of the study was to perform the LUR model in the Polish-Czech-Slovakian Tritia region, to test two sets of pollution data input factors, i.e., factors based on emission data and pollution dispersion model results, to test regression via neural networks and compare it with standard linear regression. Both input datasets, emission data and pollution dispersion model results, provided a similar quality of results in the case when standard linear regression was used, the R-2 of the models was 0.639 and 0.652. Neural network regression provided a significantly higher quality of the models, their R-2 was 0.937 and 0.938 for the factors based on emission data and pollution dispersion model results respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20700 - Environmental engineering
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Atmosphere
ISSN
2073-4433
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
000642740300001
EID výsledku v databázi Scopus
—